Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
Science. 2021 Jan 1;371(6524):72-75. doi: 10.1126/science.abb8518.
Biological membranes can achieve remarkably high permeabilities, while maintaining ideal selectivities, by relying on well-defined internal nanoscale structures in the form of membrane proteins. Here, we apply such design strategies to desalination membranes. A series of polyamide desalination membranes-which were synthesized in an industrial-scale manufacturing line and varied in processing conditions but retained similar chemical compositions-show increasing water permeability and active layer thickness with constant sodium chloride selectivity. Transmission electron microscopy measurements enabled us to determine nanoscale three-dimensional polyamide density maps and predict water permeability with zero adjustable parameters. Density fluctuations are detrimental to water transport, which makes systematic control over nanoscale polyamide inhomogeneity a key route to maximizing water permeability without sacrificing salt selectivity in desalination membranes.
生物膜可通过依赖于膜蛋白的形式的内部纳米级结构来实现极高的渗透性,同时保持理想的选择性。在这里,我们将这种设计策略应用于脱盐膜。一系列聚酰胺脱盐膜 - 这些膜在工业规模的制造线上合成,处理条件不同,但保留了相似的化学成分 - 显示出随着氯化钠选择性不变,水透过率和活性层厚度增加。透射电子显微镜测量使我们能够确定纳米级三维聚酰胺密度图,并预测水透过率,而无需调整任何参数。密度波动不利于水的传输,因此系统地控制纳米级聚酰胺的非均质性是在不牺牲脱盐膜中盐选择性的情况下最大限度地提高水透过率的关键途径。