Suppr超能文献

应用双谱分析技术改善儿童睡眠呼吸暂停诊断。

Bispectral analysis of overnight airflow to improve the pediatric sleep apnea diagnosis.

机构信息

Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain.

Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain.

出版信息

Comput Biol Med. 2021 Feb;129:104167. doi: 10.1016/j.compbiomed.2020.104167. Epub 2020 Dec 7.

Abstract

Pediatric Obstructive Sleep Apnea (OSA) is a respiratory disease whose diagnosis is performed through overnight polysomnography (PSG). Since it is a complex, time-consuming, expensive, and labor-intensive test, simpler alternatives are being intensively sought. In this study, bispectral analysis of overnight airflow (AF) signal is proposed as a potential approach to replace PSG when indicated. Thus, our objective was to characterize AF through bispectrum, and assess its performance to diagnose pediatric OSA. This characterization was conducted using 13 bispectral features from 946 AF signals. The oxygen desaturation index ≥3% (ODI3), a common clinical measure of OSA severity, was also obtained to evaluate its complementarity to the AF bispectral analysis. The fast correlation-based filter (FCBF) and a multi-layer perceptron (MLP) were used for subsequent automatic feature selection and pattern recognition stages. FCBF selected 3 bispectral features and ODI3, which were used to train a MLP model with ability to estimate apnea-hypopnea index (AHI). The model reached 82.16%, 82.49%, and 90.15% accuracies for the common AHI cut-offs 1, 5, and 10 events/h, respectively. The different bispectral approaches used to characterize AF in children provided complementary information. Accordingly, bispectral analysis showed that the occurrence of apneic events decreases the non-gaussianity and non-linear interaction of the AF harmonic components, as well as the regularity of the respiratory patterns. Moreover, the bispectral information from AF also showed complementarity with ODI3. Our findings suggest that AF bispectral analysis may serve as a useful tool to simplify the diagnosis of pediatric OSA, particularly for children with moderate-to-severe OSA.

摘要

儿童阻塞性睡眠呼吸暂停(OSA)是一种呼吸系统疾病,其诊断通过整夜多导睡眠图(PSG)进行。由于这是一项复杂、耗时、昂贵且劳动密集型的测试,因此正在积极寻找更简单的替代方法。在这项研究中,提出了整夜气流(AF)信号的双谱分析作为在需要时替代 PSG 的潜在方法。因此,我们的目标是通过双谱来描述 AF,并评估其诊断儿童 OSA 的性能。这种描述是通过从 946 个 AF 信号中提取 13 个双谱特征来进行的。还获得了氧减饱和度指数≥3%(ODI3),这是评估 OSA 严重程度的常用临床指标,以评估其与 AF 双谱分析的互补性。快速相关滤波器(FCBF)和多层感知器(MLP)用于后续的自动特征选择和模式识别阶段。FCBF 选择了 3 个双谱特征和 ODI3,用于训练具有估计呼吸暂停-低通气指数(AHI)能力的 MLP 模型。该模型对于常见的 AHI 截止值 1、5 和 10 事件/h,分别达到了 82.16%、82.49%和 90.15%的准确率。用于描述儿童 AF 的不同双谱方法提供了互补信息。因此,双谱分析表明,呼吸暂停事件的发生会降低 AF 谐波分量的非高斯性和非线性相互作用,以及呼吸模式的规律性。此外,AF 的双谱信息还与 ODI3 具有互补性。我们的研究结果表明,AF 双谱分析可能成为简化儿童 OSA 诊断的有用工具,特别是对于中重度 OSA 的儿童。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验