Suppr超能文献

通过聚多巴胺、生物矿化和 BMP-2 固定化对三维聚己内酯支架进行表面改性,用于潜在的骨组织应用。

Surface modification of a three-dimensional polycaprolactone scaffold by polydopamine, biomineralization, and BMP-2 immobilization for potential bone tissue applications.

机构信息

Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 304-343, Republic of Korea; Medical Device Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyung-ro, Osong-eub, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea.

Medical Device Convergence Center, Konyang University Hospital, 35365, 158 Gwanjedong-Ro, Seo-Gu, Daejeon, Republic of Korea.

出版信息

Colloids Surf B Biointerfaces. 2021 Mar;199:111528. doi: 10.1016/j.colsurfb.2020.111528. Epub 2020 Dec 13.

Abstract

Three-dimensional (3D) bioprinting is a free-form fabrication technique enabling fine feature control for tissue engineering applications. Especially, 3D scaffolds capable of supporting cell attachment, proliferation, and osteogenic differentiation are a prerequisite for bone tissue regeneration. Herein, we elaborated this approach to produce a 3D polycaprolactone (PCL) scaffold with long-term osteogenic activity. Specifically, we coated polydopamine (PDA) on 3D PCL scaffolds, subsequently deposited hydroxyapatite (HA) nanoparticles via biomimetic mineralization, and finally immobilized bone morphogenetic protein-2 (BMP-2). Material properties were characterized and compared with various 3D scaffolds, including PCL, PDA-coated PCL (PCL/PDA), and PDA-coated and HA-deposited PCL (PCL/PDA/HA). In vitro cell culture studies with osteoblasts revealed that the PCL/PDA/HA scaffolds immobilized with BMP-2 showed long-term retention of BMP-2 (for up to 21 days) and significantly increased osteoblast proliferation and osteogenic differentiation, as evidenced by metabolic activity, alkaline phosphatase activity, and calcium deposition. We believe that this multifunctional osteogenic 3D scaffold will be useful for bone tissue engineering applications.

摘要

三维(3D)生物打印是一种自由形态制造技术,可实现组织工程应用的精细特征控制。特别是,能够支持细胞附着、增殖和成骨分化的 3D 支架是骨组织再生的前提。本文详细介绍了一种生产具有长期成骨活性的 3D 聚己内酯(PCL)支架的方法。具体而言,我们在 3D PCL 支架上涂覆聚多巴胺(PDA),然后通过仿生矿化沉积羟基磷灰石(HA)纳米颗粒,最后固定骨形态发生蛋白-2(BMP-2)。对材料性能进行了表征,并与各种 3D 支架(包括 PCL、PDA 涂覆的 PCL(PCL/PDA)和 PDA 涂覆和 HA 沉积的 PCL(PCL/PDA/HA))进行了比较。体外成骨细胞培养研究表明,固定有 BMP-2 的 PCL/PDA/HA 支架可长时间保留 BMP-2(长达 21 天),并显著增加成骨细胞的增殖和成骨分化,这可以通过代谢活性、碱性磷酸酶活性和钙沉积来证明。我们相信这种多功能成骨 3D 支架将有助于骨组织工程应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验