Suppr超能文献

转录和形态特征分析小鼠海马区钙结合蛋白阳性中间神经元亚群。

Transcriptional and morphological profiling of parvalbumin interneuron subpopulations in the mouse hippocampus.

机构信息

Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich, Switzerland.

出版信息

Nat Commun. 2021 Jan 4;12(1):108. doi: 10.1038/s41467-020-20328-4.

Abstract

The diversity reflected by >100 different neural cell types fundamentally contributes to brain function and a central idea is that neuronal identity can be inferred from genetic information. Recent large-scale transcriptomic assays seem to confirm this hypothesis, but a lack of morphological information has limited the identification of several known cell types. In this study, we used single-cell RNA-seq in morphologically identified parvalbumin interneurons (PV-INs), and studied their transcriptomic states in the morphological, physiological, and developmental domains. Overall, we find high transcriptomic similarity among PV-INs, with few genes showing divergent expression between morphologically different types. Furthermore, PV-INs show a uniform synaptic cell adhesion molecule (CAM) profile, suggesting that CAM expression in mature PV cells does not reflect wiring specificity after development. Together, our results suggest that while PV-INs differ in anatomy and in vivo activity, their continuous transcriptomic and homogenous biophysical landscapes are not predictive of these distinct identities.

摘要

超过 100 种不同的神经细胞类型所反映的多样性从根本上促进了大脑功能,一个核心观点是神经元的身份可以从遗传信息中推断出来。最近的大规模转录组分析似乎证实了这一假设,但缺乏形态信息限制了对几种已知细胞类型的识别。在这项研究中,我们使用形态学鉴定的钙结合蛋白 2(PV)中间神经元中的单细胞 RNA 测序,并在形态、生理和发育领域研究它们的转录组状态。总的来说,我们发现 PV-IN 之间具有很高的转录组相似性,只有少数基因在形态不同的类型之间表现出不同的表达。此外,PV-INs 表现出均匀的突触细胞粘附分子(CAM)特征,这表明成熟 PV 细胞中的 CAM 表达并不能反映发育后连接的特异性。总之,我们的研究结果表明,虽然 PV-IN 在解剖和体内活性上存在差异,但它们连续的转录组和同质的生物物理景观并不能预测这些不同的身份。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e79a/7782706/a283c3509ad1/41467_2020_20328_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验