Suppr超能文献

NetMix:一种网络结构混合模型,用于降低改变子网的偏差估计。

NetMix: A Network-Structured Mixture Model for Reduced-Bias Estimation of Altered Subnetworks.

机构信息

Department of Biomedical Informatics, Emory University, Atlanta, Georgia, USA.

Department of Computer Science, Princeton University, Princeton, New Jersey, USA.

出版信息

J Comput Biol. 2021 May;28(5):469-484. doi: 10.1089/cmb.2020.0435. Epub 2021 Jan 5.

Abstract

A classic problem in computational biology is the identification of : subnetworks of an interaction network that contain genes/proteins that are differentially expressed, highly mutated, or otherwise aberrant compared with other genes/proteins. Numerous methods have been developed to solve this problem under various assumptions, but the statistical properties of these methods are often unknown. For example, some widely used methods are reported to output very large subnetworks that are difficult to interpret biologically. In this work, we formulate the identification of altered subnetworks as the problem of estimating the parameters of a class of probability distributions that we call the Altered Subset Distribution (ASD). We derive a connection between a popular method, jActiveModules, and the maximum likelihood estimator (MLE) of the ASD. We show that the MLE is , explaining the large subnetworks output by jActiveModules. Based on these insights, we introduce NetMix, an algorithm that uses Gaussian mixture models to obtain less biased estimates of the parameters of the ASD. We demonstrate that NetMix outperforms existing methods in identifying altered subnetworks on both simulated and real data, including the identification of differentially expressed genes from both microarray and RNA-seq experiments and the identification of cancer driver genes in somatic mutation data.

摘要

计算生物学中的一个经典问题是识别

与其他基因/蛋白质相比,相互作用网络中的基因/蛋白质的差异表达、高度突变或其他异常的子网。已经开发了许多方法来在各种假设下解决这个问题,但这些方法的统计特性通常是未知的。例如,一些广泛使用的方法被报道输出非常大的子网,这些子网在生物学上很难解释。在这项工作中,我们将异常子网的识别问题表述为估计一类概率分布参数的问题,我们称之为异常子集分布 (ASD)。我们推导出一种流行的方法 jActiveModules 与 ASD 的最大似然估计 (MLE) 之间的联系。我们表明,MLE 是 ,解释了 jActiveModules 输出的大子网。基于这些见解,我们引入了 NetMix,这是一种使用高斯混合模型来获得 ASD 参数的偏差更小的估计的算法。我们证明,NetMix 在识别模拟和真实数据中的异常子网方面优于现有方法,包括从微阵列和 RNA-seq 实验中识别差异表达基因以及在体细胞突变数据中识别癌症驱动基因。

相似文献

1
NetMix: A Network-Structured Mixture Model for Reduced-Bias Estimation of Altered Subnetworks.
J Comput Biol. 2021 May;28(5):469-484. doi: 10.1089/cmb.2020.0435. Epub 2021 Jan 5.
2
Hierarchical HotNet: identifying hierarchies of altered subnetworks.
Bioinformatics. 2018 Sep 1;34(17):i972-i980. doi: 10.1093/bioinformatics/bty613.
3
NetMix2: A Principled Network Propagation Algorithm for Identifying Altered Subnetworks.
J Comput Biol. 2022 Dec;29(12):1305-1323. doi: 10.1089/cmb.2022.0336.
4
BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency.
BMC Genomics. 2015;16 Suppl 7(Suppl 7):S10. doi: 10.1186/1471-2164-16-S7-S10. Epub 2015 Jun 11.
6
Differentially mutated subnetworks discovery.
Algorithms Mol Biol. 2019 Mar 30;14:10. doi: 10.1186/s13015-019-0146-7. eCollection 2019.
7
Identification of coordinately dysregulated subnetworks in complex phenotypes.
Pac Symp Biocomput. 2010:133-44. doi: 10.1142/9789814295291_0016.
8
Identification of significantly mutated subnetworks in the breast cancer genome.
Sci Rep. 2021 Jan 12;11(1):642. doi: 10.1038/s41598-020-80204-5.
9
Network module identification-A widespread theoretical bias and best practices.
Methods. 2018 Jan 1;132:19-25. doi: 10.1016/j.ymeth.2017.08.008. Epub 2017 Sep 21.
10
A scalable approach for discovering conserved active subnetworks across species.
PLoS Comput Biol. 2010 Dec 9;6(12):e1001028. doi: 10.1371/journal.pcbi.1001028.

引用本文的文献

1
Anomaly detection in spatial transcriptomics via spatially localized density comparison.
Bioinformatics. 2025 Jul 1;41(Supplement_1):i493-i501. doi: 10.1093/bioinformatics/btaf242.
3
Current and future directions in network biology.
Bioinform Adv. 2024 Aug 14;4(1):vbae099. doi: 10.1093/bioadv/vbae099. eCollection 2024.
4
Identifying new cancer genes based on the integration of annotated gene sets via hypergraph neural networks.
Bioinformatics. 2024 Jun 28;40(Suppl 1):i511-i520. doi: 10.1093/bioinformatics/btae257.
6
NetMix2: A Principled Network Propagation Algorithm for Identifying Altered Subnetworks.
J Comput Biol. 2022 Dec;29(12):1305-1323. doi: 10.1089/cmb.2022.0336.
9
DOMINO: a network-based active module identification algorithm with reduced rate of false calls.
Mol Syst Biol. 2021 Jan;17(1):e9593. doi: 10.15252/msb.20209593.

本文引用的文献

2
Hierarchical HotNet: identifying hierarchies of altered subnetworks.
Bioinformatics. 2018 Sep 1;34(17):i972-i980. doi: 10.1093/bioinformatics/bty613.
3
In vivo brain GPCR signaling elucidated by phosphoproteomics.
Science. 2018 Jun 22;360(6395). doi: 10.1126/science.aao4927.
4
Comprehensive Characterization of Cancer Driver Genes and Mutations.
Cell. 2018 Apr 5;173(2):371-385.e18. doi: 10.1016/j.cell.2018.02.060.
5
Systematic Evaluation of Molecular Networks for Discovery of Disease Genes.
Cell Syst. 2018 Apr 25;6(4):484-495.e5. doi: 10.1016/j.cels.2018.03.001. Epub 2018 Mar 28.
6
NetSig: network-based discovery from cancer genomes.
Nat Methods. 2018 Jan;15(1):61-66. doi: 10.1038/nmeth.4514. Epub 2017 Dec 4.
7
Network module identification-A widespread theoretical bias and best practices.
Methods. 2018 Jan 1;132:19-25. doi: 10.1016/j.ymeth.2017.08.008. Epub 2017 Sep 21.
9
HIT'nDRIVE: patient-specific multidriver gene prioritization for precision oncology.
Genome Res. 2017 Sep;27(9):1573-1588. doi: 10.1101/gr.221218.117. Epub 2017 Jul 18.
10
On the performance of de novo pathway enrichment.
NPJ Syst Biol Appl. 2017 Mar 3;3:6. doi: 10.1038/s41540-017-0007-2. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验