Sarkar Swarnavo, Hubbard Joseph B, Halter Michael, Plant Anne L
National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
Entropy (Basel). 2021 Jan 1;23(1):63. doi: 10.3390/e23010063.
Gene regulatory networks (GRNs) control biological processes like pluripotency, differentiation, and apoptosis. Omics methods can identify a large number of putative network components (on the order of hundreds or thousands) but it is possible that in many cases a small subset of genes control the state of GRNs. Here, we explore how the topology of the interactions between network components may indicate whether the effective state of a GRN can be represented by a small subset of genes. We use methods from information theory to model the regulatory interactions in GRNs as cascading and superposing information channels. We propose an information loss function that enables identification of the conditions by which a small set of genes can represent the state of all the other genes in the network. This information-theoretic analysis extends to a measure of free energy change due to communication within the network, which provides a new perspective on the reducibility of GRNs. Both the information loss and relative free energy depend on the density of interactions and edge communication error in a network. Therefore, this work indicates that a loss in mutual information between genes in a GRN is directly coupled to a thermodynamic cost, i.e., a reduction of relative free energy, of the system.
基因调控网络(GRNs)控制着多能性、分化和凋亡等生物过程。组学方法可以识别大量假定的网络组件(数百或数千个),但在许多情况下,可能只有一小部分基因控制着基因调控网络的状态。在这里,我们探讨网络组件之间相互作用的拓扑结构如何表明基因调控网络的有效状态是否可以由一小部分基因来表示。我们使用信息论方法将基因调控网络中的调控相互作用建模为级联和叠加信息通道。我们提出了一种信息损失函数,该函数能够识别一小部分基因可以表示网络中所有其他基因状态的条件。这种信息论分析扩展到了由于网络内部通信导致的自由能变化的度量,这为基因调控网络的可简化性提供了新的视角。信息损失和相对自由能都取决于网络中相互作用的密度和边通信误差。因此,这项工作表明基因调控网络中基因之间互信息的损失直接与系统的热力学成本相关,即相对自由能的降低。