Daelemans Brent, Bilbao Nerea, Dehaen Wim, De Feyter Steven
Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven, Celestijnenlaan 200 F, 3001 Leuven, Belgium.
Division of Molecular Design and Synthesis, Department of Chemistry, KU Leuven-University of Leuven, Celestijnenlaan 200 F, 3001 Leuven, Belgium.
Chem Soc Rev. 2021 Mar 1;50(4):2280-2296. doi: 10.1039/d0cs01294g.
Carbocatalysis holds a privileged position as a sustainable alternative to metal-based catalysis. While the focus in solution-based catalytic processes generally lies on how the heterogeneous catalyst affects the solution composition, more attention has recently been given to the analysis of the carbon material itself. Various outstanding surface characterisation techniques, efficient in assessing the catalyst on-surface composition, are now available. These include high-resolution imaging tools such as scanning tunneling microscopy (STM), capable of bringing new insights into the processes determining rate and selectivity effects induced by carbocatalysts. In this regard, the use of self-assembly on graphite as a strategy to direct the outcome of chemical reactions has already shown great potential. This promising approach gives the scientific community the exciting prospect of rationalising selectivity in carbocatalysis with pristine graphite by linking in-solution and on-surface composition.
碳催化作为金属基催化的一种可持续替代方法,占据着特殊的地位。虽然基于溶液的催化过程通常关注非均相催化剂如何影响溶液组成,但最近人们更多地关注碳材料本身的分析。现在有各种出色的表面表征技术可用于评估催化剂的表面组成。这些技术包括高分辨率成像工具,如扫描隧道显微镜(STM),它能够为确定碳催化剂诱导的速率和选择性效应的过程带来新的见解。在这方面,利用在石墨上的自组装作为指导化学反应结果的策略已经显示出巨大的潜力。这种有前景的方法为科学界带来了令人兴奋的前景,即通过将溶液内和表面组成联系起来,使原始石墨在碳催化中的选择性合理化。