Seifert Urban F P, Dong Xiao-Yu, Chulliparambil Sreejith, Vojta Matthias, Tu Hong-Hao, Janssen Lukas
Institut für Theoretische Physik and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany.
Department of Physics and Astronomy, Ghent University, Krijgslaan 281, 9000 Gent, Belgium.
Phys Rev Lett. 2020 Dec 18;125(25):257202. doi: 10.1103/PhysRevLett.125.257202.
We study transitions between topological phases featuring emergent fractionalized excitations in two-dimensional models for Mott insulators with spin and orbital degrees of freedom. The models realize fermionic quantum critical points in fractionalized Gross-Neveu* universality classes in (2+1) dimensions. They are characterized by the same set of critical exponents as their ordinary Gross-Neveu counterparts, but feature a different energy spectrum, reflecting the nontrivial topology of the adjacent phases. We exemplify this in a square-lattice model, for which an exact mapping to a t-V model of spinless fermions allows us to make use of large-scale numerical results, as well as in a honeycomb-lattice model, for which we employ ε-expansion and large-N methods to estimate the critical behavior. Our results are potentially relevant for Mott insulators with d^{1} electronic configurations and strong spin-orbit coupling, or for twisted bilayer structures of Kitaev materials.
我们研究了具有自旋和轨道自由度的二维莫特绝缘体模型中,以涌现的分数化激发为特征的拓扑相之间的转变。这些模型在(2 + 1)维的分数化格罗斯 - 内夫普遍性类中实现了费米子量子临界点。它们与普通格罗斯 - 内夫对应物具有相同的一组临界指数,但具有不同的能谱,这反映了相邻相的非平凡拓扑结构。我们在一个方形晶格模型中举例说明了这一点,对于该模型,到无自旋费米子的t - V模型的精确映射使我们能够利用大规模数值结果,以及在一个蜂窝晶格模型中,我们采用ε展开和大N方法来估计临界行为。我们的结果可能与具有d¹电子构型和强自旋 - 轨道耦合的莫特绝缘体,或与基塔耶夫材料的扭曲双层结构相关。