Suppr超能文献

一种预测百草枯中毒患者预后的新型简单风险模型。

A novel simple risk model to predict the prognosis of patients with paraquat poisoning.

机构信息

Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.

Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.

出版信息

Sci Rep. 2021 Jan 8;11(1):237. doi: 10.1038/s41598-020-80371-5.

Abstract

To identify risk factors and develop a simple model to predict early prognosis of acute paraquat (PQ) poisoning patients, we performed a retrospective cohort study of acute PQ poisoning patients (n = 1199). Patients (n = 913) with PQ poisoning from 2011 to 2018 were randomly divided into training (n = 609) and test (n = 304) samples. Another two independent cohorts were used as validation samples for a different time (n = 207) and site (n = 79). Risk factors were identified using a logistic model with Markov Chain Monte Carlo (MCMC) simulation and further evaluated using a latent class analysis. The prediction score was developed based on the training sample and was evaluated using the testing and validation samples. Eight factors, including age, ingestion volume, creatine kinase-MB [CK-MB], platelet [PLT], white blood cell [WBC], neutrophil counts [N], gamma-glutamyl transferase [GGT], and serum creatinine [Cr] were identified as independent risk indicators of in-hospital death events. The risk model had C statistics of 0.895 (95% CI 0.855-0.928), 0.891 (95% CI 0.848-0.932), and 0.829 (95% CI 0.455-1.000), and predictive ranges of 4.6-98.2%, 2.3-94.9%, and 0-12.5% for the test, validation_time, and validation_site samples, respectively. In the training sample, the risk model classified 18.4%, 59.9%, and 21.7% of patients into the high-, average-, and low-risk groups, with corresponding probabilities of 0.985, 0.365, and 0.03 for in-hospital death events. We developed and evaluated a simple risk model to predict the prognosis of patients with acute PQ poisoning. This risk scoring system could be helpful for identifying high-risk patients and reducing mortality due to PQ poisoning.

摘要

为了确定急性百草枯(PQ)中毒患者的早期预后的危险因素并建立一个简单的预测模型,我们对急性 PQ 中毒患者(n=1199)进行了回顾性队列研究。2011 年至 2018 年,将 913 例 PQ 中毒患者随机分为训练(n=609)和测试(n=304)样本。另外两个独立的队列被用作不同时间(n=207)和地点(n=79)的验证样本。使用带有马尔可夫链蒙特卡罗(MCMC)模拟的逻辑模型识别危险因素,并进一步使用潜在类别分析进行评估。预测评分是基于训练样本开发的,并在测试和验证样本中进行评估。年龄、摄入量、肌酸激酶同工酶[CK-MB]、血小板[PLT]、白细胞[WBC]、中性粒细胞计数[N]、γ-谷氨酰转移酶[GGT]和血清肌酐[Cr]共 8 个因素被确定为院内死亡事件的独立危险因素。风险模型的 C 统计量分别为 0.895(95%CI 0.855-0.928)、0.891(95%CI 0.848-0.932)和 0.829(95%CI 0.455-1.000),测试、验证_time 和验证_site 样本的预测范围分别为 4.6-98.2%、2.3-94.9%和 0-12.5%。在训练样本中,风险模型将 18.4%、59.9%和 21.7%的患者分为高、中、低风险组,相应的院内死亡事件概率分别为 0.985、0.365 和 0.03。我们建立并评估了一个简单的风险预测模型,以预测急性 PQ 中毒患者的预后。该风险评分系统有助于识别高危患者并降低 PQ 中毒死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d859/7794476/1d25e5586a15/41598_2020_80371_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验