Suppr超能文献

利用眼底照片的纵向深度学习预测预测青光眼的发展。

Predicting Glaucoma Development With Longitudinal Deep Learning Predictions From Fundus Photographs.

机构信息

Vision, Imaging and Performance Laboratory, Duke Eye Center and Department of Ophthalmology, Duke University, Durham, North Carolina, USA.

Vision, Imaging and Performance Laboratory, Duke Eye Center and Department of Ophthalmology, Duke University, Durham, North Carolina, USA; Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA.

出版信息

Am J Ophthalmol. 2021 May;225:86-94. doi: 10.1016/j.ajo.2020.12.031. Epub 2021 Jan 7.

Abstract

PURPOSE

To assess whether longitudinal changes in a deep learning algorithm's predictions of retinal nerve fiber layer (RNFL) thickness based on fundus photographs can predict future development of glaucomatous visual field defects.

DESIGN

Retrospective cohort study.

METHODS

This study included 1,072 eyes of 827 glaucoma-suspect patients with an average follow-up of 5.9 ± 3.8 years. All eyes had normal standard automated perimetry (SAP) at baseline. Additional SAP and fundus photographs were acquired throughout follow-up. Conversion to glaucoma was defined as repeatable glaucomatous defects on SAP. An OCT-trained deep learning algorithm (machine to machine, M2M) was used to predict RNFL thicknesses from fundus photographs. Joint longitudinal survival models were used to assess whether baseline and longitudinal change in M2M's RNFL thickness estimates could predict development of visual field defects.

RESULTS

A total of 196 eyes (18%) converted to glaucoma during follow-up. The mean rate of change in M2M's predicted RNFL thickness was -1.02 μm/y for converters and -0.67 μm/y for non-converters (P < .001). Baseline and rate of change of predicted RNFL thickness were significantly predictive of conversion to glaucoma, with hazard ratios in the multivariable model of 1.56 per 10 μm lower at baseline (95% CI, 1.33-1.82; P < .001) and 1.99 per 1 μm/y faster loss in thickness during follow-up (95% CI, 1.36-2.93; P < .001).

CONCLUSION

Longitudinal changes in a deep learning algorithm's predictions of RNFL thickness measurements based on fundus photographs can be used to predict risk of glaucoma conversion in eyes suspected of having the disease.

摘要

目的

评估基于眼底照片的深度学习算法对视网膜神经纤维层(RNFL)厚度的预测值的纵向变化是否可以预测青光眼视野缺损的未来发展。

设计

回顾性队列研究。

方法

本研究纳入了 827 名青光眼疑似患者的 1072 只眼,平均随访时间为 5.9±3.8 年。所有眼在基线时均有正常的标准自动视野检查(SAP)。在整个随访过程中还获得了额外的 SAP 和眼底照片。将青光眼的转化定义为 SAP 上可重复的青光眼缺陷。使用经过 OCT 训练的深度学习算法(机器对机器,M2M)从眼底照片预测 RNFL 厚度。联合纵向生存模型用于评估 M2M 的 RNFL 厚度估计的基线和纵向变化是否可以预测视野缺陷的发展。

结果

在随访期间,共有 196 只眼(18%)转化为青光眼。M2M 预测的 RNFL 厚度的平均变化率为 1.02μm/y 为转化者,-0.67μm/y 为非转化者(P<0.001)。基线和预测 RNFL 厚度的变化率与向青光眼的转化显著相关,多变量模型中的风险比为基线时每降低 10μm 增加 1.56(95%CI,1.33-1.82;P<0.001),随访期间厚度损失每增加 1μm/y 增加 1.99(95%CI,1.36-2.93;P<0.001)。

结论

基于眼底照片的深度学习算法对 RNFL 厚度测量的预测值的纵向变化可用于预测疑似患有该疾病的眼发生青光眼转化的风险。

相似文献

1
Predicting Glaucoma Development With Longitudinal Deep Learning Predictions From Fundus Photographs.
Am J Ophthalmol. 2021 May;225:86-94. doi: 10.1016/j.ajo.2020.12.031. Epub 2021 Jan 7.
2
Detection of Progressive Glaucomatous Optic Nerve Damage on Fundus Photographs with Deep Learning.
Ophthalmology. 2021 Mar;128(3):383-392. doi: 10.1016/j.ophtha.2020.07.045. Epub 2020 Jul 28.
3
Human Versus Machine: Comparing a Deep Learning Algorithm to Human Gradings for Detecting Glaucoma on Fundus Photographs.
Am J Ophthalmol. 2020 Mar;211:123-131. doi: 10.1016/j.ajo.2019.11.006. Epub 2019 Nov 12.
4
From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs.
Ophthalmology. 2019 Apr;126(4):513-521. doi: 10.1016/j.ophtha.2018.12.033. Epub 2018 Dec 20.
5
Baseline optical coherence tomography predicts the development of glaucomatous change in glaucoma suspects.
Am J Ophthalmol. 2006 Oct;142(4):576-82. doi: 10.1016/j.ajo.2006.05.004.
7
Association between progressive retinal nerve fiber layer loss and longitudinal change in quality of life in glaucoma.
JAMA Ophthalmol. 2015 Apr;133(4):384-90. doi: 10.1001/jamaophthalmol.2014.5319.
9
Assessment of a Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma From Optical Coherence Tomography Scans.
JAMA Ophthalmol. 2020 Apr 1;138(4):333-339. doi: 10.1001/jamaophthalmol.2019.5983.
10
Agreement of retinal nerve fiber layer defect location between red-free fundus photography and cirrus HD-OCT maps.
Curr Eye Res. 2014 Nov;39(11):1099-105. doi: 10.3109/02713683.2014.900805. Epub 2014 Apr 21.

引用本文的文献

1
A Deep Learning Model for Detecting the Eyes Receiving Glaucoma Medications Using Anterior Segment Images.
Transl Vis Sci Technol. 2025 Aug 1;14(8):28. doi: 10.1167/tvst.14.8.28.
4
Optimising deep learning models for ophthalmological disorder classification.
Sci Rep. 2025 Jan 24;15(1):3115. doi: 10.1038/s41598-024-75867-3.
5
Application of artificial intelligence in glaucoma care: An updated review.
Taiwan J Ophthalmol. 2024 Sep 13;14(3):340-351. doi: 10.4103/tjo.TJO-D-24-00044. eCollection 2024 Jul-Sep.
7
Multi-step framework for glaucoma diagnosis in retinal fundus images using deep learning.
Med Biol Eng Comput. 2025 Jan;63(1):1-13. doi: 10.1007/s11517-024-03172-2. Epub 2024 Aug 5.
8
Deep learning and optical coherence tomography in glaucoma: Bridging the diagnostic gap on structural imaging.
Front Ophthalmol (Lausanne). 2022 Sep 21;2:937205. doi: 10.3389/fopht.2022.937205. eCollection 2022.
9
Optical Coherence Tomography Versus Optic Disc Photo Assessment in Glaucoma Screening.
J Glaucoma. 2024 Aug 1;33(Suppl 1):S21-S25. doi: 10.1097/IJG.0000000000002392. Epub 2024 Mar 28.
10
Advancing Glaucoma Care: Integrating Artificial Intelligence in Diagnosis, Management, and Progression Detection.
Bioengineering (Basel). 2024 Jan 26;11(2):122. doi: 10.3390/bioengineering11020122.

本文引用的文献

1
Detection of Progressive Glaucomatous Optic Nerve Damage on Fundus Photographs with Deep Learning.
Ophthalmology. 2021 Mar;128(3):383-392. doi: 10.1016/j.ophtha.2020.07.045. Epub 2020 Jul 28.
2
Rates of Glaucomatous Structural and Functional Change From a Large Clinical Population: The Duke Glaucoma Registry Study.
Am J Ophthalmol. 2021 Feb;222:238-247. doi: 10.1016/j.ajo.2020.05.019. Epub 2020 May 23.
3
Telemedicine for Diabetic Retinopathy Screening in an Urban, Insured Population Using Fundus Cameras in a Primary Care Office Setting.
Ophthalmic Surg Lasers Imaging Retina. 2019 Nov 1;50(11):e274-e277. doi: 10.3928/23258160-20191031-14.
4
Human Versus Machine: Comparing a Deep Learning Algorithm to Human Gradings for Detecting Glaucoma on Fundus Photographs.
Am J Ophthalmol. 2020 Mar;211:123-131. doi: 10.1016/j.ajo.2019.11.006. Epub 2019 Nov 12.
5
First Clinical Application of Low-Cost OCT.
Transl Vis Sci Technol. 2019 Jun 28;8(3):61. doi: 10.1167/tvst.8.3.61. eCollection 2019 May.
6
From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs.
Ophthalmology. 2019 Apr;126(4):513-521. doi: 10.1016/j.ophtha.2018.12.033. Epub 2018 Dec 20.
7
Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs.
Ophthalmology. 2018 Aug;125(8):1199-1206. doi: 10.1016/j.ophtha.2018.01.023. Epub 2018 Mar 2.
9
Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis.
Lancet Glob Health. 2017 Dec;5(12):e1221-e1234. doi: 10.1016/S2214-109X(17)30393-5. Epub 2017 Oct 11.
10
Accuracy and Reliability of a Handheld, Nonmydriatic Fundus Camera for the Remote Detection of Optic Disc Edema.
Telemed J E Health. 2018 May;24(5):344-350. doi: 10.1089/tmj.2017.0120. Epub 2017 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验