Suppr超能文献

人类严重急性呼吸系统综合征冠状病毒 2 刺突蛋白突变。

Human SARS CoV-2 spike protein mutations.

机构信息

School of Chemistry, University of Hyderabad, Hyderabad, India.

出版信息

Proteins. 2021 May;89(5):569-576. doi: 10.1002/prot.26042. Epub 2021 Jan 17.

Abstract

The human spike protein sequences from Asia, Africa, Europe, North America, South America, and Oceania were analyzed by comparing with the reference severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) protein sequence from Wuhan-Hu-1, China. Out of 10333 spike protein sequences analyzed, 8155 proteins comprised one or more mutations. A total of 9654 mutations were observed that correspond to 400 distinct mutation sites. The receptor binding domain (RBD) which is involved in the interactions with human angiotensin-converting enzyme-2 (ACE-2) receptor and causes infection leading to the COVID-19 disease comprised 44 mutations that included residues within 3.2 Å interacting distance from the ACE-2 receptor. The mutations observed in the spike proteins are discussed in the context of their distribution according to the geographical locations, mutation sites, mutation types, distribution of the number of mutations at the mutation sites and mutations at the glycosylation sites. The density of mutations in different regions of the spike protein sequence and location of the mutations in protein three-dimensional structure corresponding to the RBD are discussed. The mutations identified in the present work are important considerations for antibody, vaccine, and drug development.

摘要

对来自亚洲、非洲、欧洲、北美洲、南美洲和大洋洲的人类刺突蛋白序列与来自中国武汉的参考严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)蛋白序列进行了比较分析。在分析的 10333 个刺突蛋白序列中,有 8155 个蛋白包含一个或多个突变。共观察到 9654 个突变,对应 400 个不同的突变位点。参与与人类血管紧张素转换酶-2(ACE-2)受体相互作用并导致导致 COVID-19 疾病感染的受体结合域(RBD)包含 44 个突变,这些突变包括与 ACE-2 受体相互作用距离在 3.2Å 内的残基。根据地理位置、突变位点、突变类型、突变位点的突变数量分布以及糖基化位点的突变,对刺突蛋白中的突变进行了讨论。讨论了不同区域的刺突蛋白序列中的突变密度以及对应 RBD 的蛋白质三维结构中的突变位置。本研究中鉴定的突变是抗体、疫苗和药物开发的重要考虑因素。

相似文献

1
Human SARS CoV-2 spike protein mutations.
Proteins. 2021 May;89(5):569-576. doi: 10.1002/prot.26042. Epub 2021 Jan 17.
3
Mutations in human SARS-CoV-2 spike proteins, potential drug binding and epitope sites for COVID-19 therapeutics development.
Curr Res Struct Biol. 2022;4:41-50. doi: 10.1016/j.crstbi.2022.01.002. Epub 2022 Feb 9.
4
Static all-atom energetic mappings of the SARS-Cov-2 spike protein and dynamic stability analysis of "Up" versus "Down" protomer states.
PLoS One. 2020 Nov 10;15(11):e0241168. doi: 10.1371/journal.pone.0241168. eCollection 2020.
6
Assessment of intercontinents mutation hotspots and conserved domains within SARS-CoV-2 genome.
Infect Genet Evol. 2021 Dec;96:105097. doi: 10.1016/j.meegid.2021.105097. Epub 2021 Oct 1.
7
Structural and simulation analysis of hotspot residues interactions of SARS-CoV 2 with human ACE2 receptor.
J Biomol Struct Dyn. 2021 Jul;39(11):4015-4025. doi: 10.1080/07391102.2020.1773318. Epub 2020 Jun 4.

引用本文的文献

1
Stoichiometric insights into SARS-CoV-2 spike-ACE2 binding across variants.
Comput Struct Biotechnol J. 2025 Jul 24;27:3285-3291. doi: 10.1016/j.csbj.2025.07.034. eCollection 2025.
2
The evaluation of SARS-CoV-2 mutations at the early stage of the pandemic in Istanbul population.
Ann Clin Microbiol Antimicrob. 2024 Oct 10;23(1):93. doi: 10.1186/s12941-024-00750-y.
5
Mutational dynamics of SARS-CoV-2: Impact on future COVID-19 vaccine strategies.
Heliyon. 2024 Apr 25;10(9):e30208. doi: 10.1016/j.heliyon.2024.e30208. eCollection 2024 May 15.
6
SARS-CoV-2 and Its Omicron Variants Detection with RT-RPA -CRISPR/Cas13a-Based Method at Room Temperature.
Rep Biochem Mol Biol. 2023 Oct;12(3):425-437. doi: 10.61186/rbmb.12.3.425.
9
A systematic overview of metal nanoparticles as alternative disinfectants for emerging SARS-CoV-2 variants.
Arch Microbiol. 2024 Feb 19;206(3):111. doi: 10.1007/s00203-023-03818-z.
10
SARS-CoV-2 BA.2.86 enters lung cells and evades neutralizing antibodies with high efficiency.
Cell. 2024 Feb 1;187(3):596-608.e17. doi: 10.1016/j.cell.2023.12.025. Epub 2024 Jan 8.

本文引用的文献

1
Human coronavirus spike protein-host receptor recognition.
Prog Biophys Mol Biol. 2021 May;161:39-53. doi: 10.1016/j.pbiomolbio.2020.10.006. Epub 2020 Oct 31.
2
Geographic and Genomic Distribution of SARS-CoV-2 Mutations.
Front Microbiol. 2020 Jul 22;11:1800. doi: 10.3389/fmicb.2020.01800. eCollection 2020.
3
The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity.
Cell. 2020 Sep 3;182(5):1284-1294.e9. doi: 10.1016/j.cell.2020.07.012. Epub 2020 Jul 17.
4
Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus.
Cell. 2020 Aug 20;182(4):812-827.e19. doi: 10.1016/j.cell.2020.06.043. Epub 2020 Jul 3.
5
6
Pangolins Harbor SARS-CoV-2-Related Coronaviruses.
Trends Microbiol. 2020 Jul;28(7):515-517. doi: 10.1016/j.tim.2020.04.001. Epub 2020 Apr 6.
9
Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2.
Cell. 2020 May 14;181(4):894-904.e9. doi: 10.1016/j.cell.2020.03.045. Epub 2020 Apr 9.
10
Full-genome sequences of the first two SARS-CoV-2 viruses from India.
Indian J Med Res. 2020;151(2 & 3):200-209. doi: 10.4103/ijmr.IJMR_663_20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验