Suppr超能文献

深度学习架构与 MRI 脑肿瘤分割方法综述

A Review on Deep Learning Architecture and Methods for MRI Brain Tumour Segmentation.

机构信息

School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India.

出版信息

Curr Med Imaging. 2021;17(6):695-706. doi: 10.2174/1573405616666210108122048.

Abstract

BACKGROUND

The automatic segmentation of brain tumour from MRI medical images is mainly covered in this review. Recently, state-of-the-art performance is provided by deep learning- based approaches in the field of image classification, segmentation, object detection, and tracking tasks.

INTRODUCTION

The core feature deep learning approach is the hierarchical representation of features from images, thus avoiding domain-specific handcrafted features.

METHODS

In this review paper, we have dealt with a review of Deep Learning Architecture and Methods for MRI Brain Tumour Segmentation. First, we have discussed the basic architecture and approaches for deep learning methods. Secondly, we have discussed the literature survey of MRI brain tumour segmentation using deep learning methods and its multimodality fusion. Then, the advantages and disadvantages of each method are analyzed and finally, it is concluded with a discussion on the merits and challenges of deep learning techniques.

RESULTS

The review of brain tumour identification using deep learning.

CONCLUSION

Techniques may help the researchers to have a better focus on it.

摘要

背景

本综述主要涉及从 MRI 医学图像中自动分割脑肿瘤。最近,基于深度学习的方法在图像分类、分割、目标检测和跟踪任务领域提供了最先进的性能。

简介

深度学习方法的核心特征是从图像中分层表示特征,从而避免了特定于领域的手工制作特征。

方法

在这篇综述论文中,我们讨论了用于 MRI 脑肿瘤分割的深度学习架构和方法。首先,我们讨论了深度学习方法的基本架构和方法。其次,我们讨论了使用深度学习方法进行 MRI 脑肿瘤分割及其多模态融合的文献调查。然后,分析了每种方法的优缺点,最后讨论了深度学习技术的优点和挑战。

结果

使用深度学习进行脑肿瘤识别的综述。

结论

这些技术可能有助于研究人员更好地关注它。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验