Suppr超能文献

基因工程弹性蛋白-丝素共聚物的合理设计与分级组装导致形成刚性水凝胶。

Rational Design and Hierarchical Assembly of a Genetically Engineered Resilin-Silk Copolymer Results in Stiff Hydrogels.

作者信息

Huang Sheng-Chen, Qian Zhi-Gang, Dan Ao-Huan, Hu Xiao, Zhou Ming-Liang, Xia Xiao-Xia

机构信息

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.

出版信息

ACS Biomater Sci Eng. 2017 Aug 14;3(8):1576-1585. doi: 10.1021/acsbiomaterials.7b00353. Epub 2017 Jun 22.

Abstract

Genetically engineered protein polymers, which can combine different unique peptide sequences from natural protein materials, offer great opportunities for making advanced materials with well-defined structures and properties. Here we report for the first time biosynthesis and self-assembly of a recombinant resilin-silk (RS) copolymer consisting of repeating units of silk and resilin blocks. The copolymer in aqueous solution self-assembled into nanoparticles, and the assembled nanoparticles further form nano- to microscale fibers in a time-dependent manner at body temperature, whereas such fibers were not formed upon incubation of the copolymer at either low or high temperatures. In contrast, a resilin-like polypeptide without the silk blocks exhibited a typical thermoresponsive dual-phase transition behavior and was incapable of self-assembling into fibers. More interestingly, the microscale fibers self-assembled from a moderately concentrated RS solution (20 wt %) could interact to give a self-supporting, semitransparent hydrogel with elastic modulus at approximately 195 Pa. Furthermore, photo-cross-linking of either freshly prepared or annealed RS copolymer led to the formation of stiff hydrogels and the material mechanical property was superior upon annealing of the RS solution for a longer time up to 4 h, with elastic modulus ranging from 2.9 to 7.0 kPa. These results not only shed light on the fundamental hierarchical assembly mechanism of a new family of genetically engineered RS copolymer but also suggest future opportunities for these thermoresponsive polymers in fabrication of hydrogel materials with tunable mechanical properties for diverse applications.

摘要

基因工程蛋白聚合物能够结合天然蛋白质材料中不同的独特肽序列,为制造具有明确结构和性能的先进材料提供了巨大机遇。在此,我们首次报道了一种由丝和弹性蛋白块重复单元组成的重组弹性蛋白-丝(RS)共聚物的生物合成和自组装。该共聚物在水溶液中自组装成纳米颗粒,且组装后的纳米颗粒在体温下会随时间形成从纳米到微米级的纤维,而在低温或高温下孵育该共聚物时则不会形成此类纤维。相比之下,不含丝块的类弹性蛋白多肽表现出典型的热响应双相转变行为,且无法自组装成纤维。更有趣的是,由中等浓度(20 wt%)的RS溶液自组装而成的微米级纤维能够相互作用,形成一种具有约195 Pa弹性模量的自支撑半透明水凝胶。此外,对新制备的或退火的RS共聚物进行光交联会导致形成刚性水凝胶,并且在将RS溶液退火长达4小时后材料的机械性能更优,弹性模量范围为2.9至7.0 kPa。这些结果不仅揭示了一类新型基因工程RS共聚物的基本分级组装机制,还为这些热响应聚合物在制造具有可调机械性能以用于各种应用的水凝胶材料方面提供了未来机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验