Suppr超能文献

植物中的生长素代谢。

Auxin Metabolism in Plants.

机构信息

Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.

出版信息

Cold Spring Harb Perspect Biol. 2021 Mar 1;13(3):a039867. doi: 10.1101/cshperspect.a039867.

Abstract

The major natural auxin in plants, indole-3-acetic acid (IAA), orchestrates a plethora of developmental responses that largely depend on the formation of auxin concentration gradients within plant tissues. Together with inter- and intracellular transport, IAA metabolism-which comprises biosynthesis, conjugation, and degradation-modulates auxin gradients and is therefore critical for plant growth. It is now very well established that IAA is mainly produced from Trp and that the IPyA pathway is a major and universally conserved biosynthetic route in plants, while other redundant pathways operate in parallel. Recent findings have shown that metabolic inactivation of IAA is also redundantly performed by oxidation and conjugation processes. An exquisite spatiotemporal expression of the genes for auxin synthesis and inactivation have been shown to drive several plant developmental processes. Moreover, a group of transcription factors and epigenetic regulators controlling the expression of auxin metabolic genes have been identified in past years, which are illuminating the road to understanding the molecular mechanisms behind the coordinated responses of local auxin metabolism to specific cues. Besides transcriptional regulation, subcellular compartmentalization of the IAA metabolism and posttranslational modifications of the metabolic enzymes are emerging as important contributors to IAA homeostasis. In this review, we summarize the current knowledge on (1) the pathways for IAA biosynthesis and inactivation in plants, (2) the influence of spatiotemporally regulated IAA metabolism on auxin-mediated responses, and (3) the regulatory mechanisms that modulate IAA levels in response to external and internal cues during plant development.

摘要

植物中的主要天然生长素吲哚-3-乙酸(IAA),协调了大量的发育反应,这些反应在很大程度上依赖于植物组织内生长素浓度梯度的形成。与细胞内和细胞间运输一起,IAA 代谢——包括生物合成、共轭和降解——调节生长素梯度,因此对植物生长至关重要。现在已经非常清楚,IAA 主要由色氨酸产生,而 IPyA 途径是植物中主要的和普遍保守的生物合成途径,而其他冗余途径则并行运作。最近的研究结果表明,IAA 的代谢失活也是通过氧化和共轭过程冗余地进行的。生长素合成和失活基因的精细时空表达被证明可以驱动几种植物发育过程。此外,近年来已经确定了一组转录因子和表观遗传调节剂,它们控制着生长素代谢基因的表达,这为理解局部生长素代谢对特定信号的协调反应背后的分子机制指明了道路。除了转录调控外,IAA 代谢的亚细胞区室化和代谢酶的翻译后修饰也被认为是 IAA 动态平衡的重要贡献者。在这篇综述中,我们总结了目前关于(1)植物中 IAA 生物合成和失活途径的知识,(2)时空调节的 IAA 代谢对生长素介导的反应的影响,以及(3)调节机制,这些机制可以响应植物发育过程中的外部和内部信号来调节 IAA 水平。

相似文献

1
Auxin Metabolism in Plants.
Cold Spring Harb Perspect Biol. 2021 Mar 1;13(3):a039867. doi: 10.1101/cshperspect.a039867.
2
The pathway of auxin biosynthesis in plants.
J Exp Bot. 2012 May;63(8):2853-72. doi: 10.1093/jxb/ers091. Epub 2012 Mar 23.
3
Auxin: regulation, action, and interaction.
Ann Bot. 2005 Apr;95(5):707-35. doi: 10.1093/aob/mci083. Epub 2005 Mar 4.
4
Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis.
Plant Cell Rep. 2015 Aug;34(8):1343-52. doi: 10.1007/s00299-015-1791-z. Epub 2015 Apr 23.
5
Auxin biosynthesis and storage forms.
J Exp Bot. 2013 Jun;64(9):2541-55. doi: 10.1093/jxb/ert080. Epub 2013 Apr 11.
6
Why plants need more than one type of auxin.
Plant Sci. 2011 Mar;180(3):454-60. doi: 10.1016/j.plantsci.2010.12.007. Epub 2010 Dec 22.
7
An Evolutionarily Primitive and Distinct Auxin Metabolism in the Lycophyte Selaginella moellendorffii.
Plant Cell Physiol. 2020 Oct 1;61(10):1724-1732. doi: 10.1093/pcp/pcaa098.
8
Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants.
Mol Plant. 2012 Mar;5(2):334-8. doi: 10.1093/mp/ssr104. Epub 2011 Dec 8.
9
Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis.
Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):11016-21. doi: 10.1073/pnas.1604375113. Epub 2016 Sep 20.
10
Genetic aspects of auxin biosynthesis and its regulation.
Physiol Plant. 2014 May;151(1):3-12. doi: 10.1111/ppl.12098. Epub 2013 Oct 3.

引用本文的文献

1
Regulatory Mechanism of the GmMYB14 Transcription Factor on Auxin-Related Proteins in Soybean.
Int J Mol Sci. 2025 Aug 11;26(16):7763. doi: 10.3390/ijms26167763.
3
Effects of tryptamine on duckweed growth.
Front Plant Sci. 2025 Jul 8;16:1625939. doi: 10.3389/fpls.2025.1625939. eCollection 2025.
8
The triggering mechanism for predominant hormonal signal production in fleshy fruit ripening.
Mol Hortic. 2025 Jun 6;5(1):35. doi: 10.1186/s43897-025-00155-1.
9
Integrated physiological, transcriptomic, and metabolomic analyses of 'Boju' under excessive indole-3-acetic acid stress.
Front Plant Sci. 2025 Apr 25;16:1531585. doi: 10.3389/fpls.2025.1531585. eCollection 2025.
10
Signalling and regulation of plant development by carbon/nitrogen balance.
Physiol Plant. 2025 Mar-Apr;177(2):e70228. doi: 10.1111/ppl.70228.

本文引用的文献

1
PI4Kγ2 Interacts with E3 Ligase MIEL1 to Regulate Auxin Metabolism and Root Development.
Plant Physiol. 2020 Oct;184(2):933-944. doi: 10.1104/pp.20.00799. Epub 2020 Aug 11.
2
Local auxin biosynthesis is required for root regeneration after wounding.
Nat Plants. 2020 Aug;6(8):1020-1030. doi: 10.1038/s41477-020-0737-9. Epub 2020 Aug 3.
3
ZmDREB2A regulates ZmGH3.2 and ZmRAFS, shifting metabolism towards seed aging tolerance over seedling growth.
Plant J. 2020 Sep;104(1):268-282. doi: 10.1111/tpj.14922. Epub 2020 Jul 29.
4
Loss of function of the aminotransferase gene, which is involved in auxin homeostasis, induces parthenocarpy in Solanaceae plants.
Proc Natl Acad Sci U S A. 2020 Jun 9;117(23):12784-12790. doi: 10.1073/pnas.2001211117. Epub 2020 May 27.
5
Role of Arabidopsis INDOLE-3-ACETIC ACID CARBOXYL METHYLTRANSFERASE 1 in auxin metabolism.
Biochem Biophys Res Commun. 2020 Jul 5;527(4):1033-1038. doi: 10.1016/j.bbrc.2020.05.031. Epub 2020 May 20.
6
A common allosteric mechanism regulates homeostatic inactivation of auxin and gibberellin.
Nat Commun. 2020 May 1;11(1):2143. doi: 10.1038/s41467-020-16068-0.
7
Two homologous INDOLE-3-ACETAMIDE (IAM) HYDROLASE genes are required for the auxin effects of IAM in Arabidopsis.
J Genet Genomics. 2020 Mar 20;47(3):157-165. doi: 10.1016/j.jgg.2020.02.009. Epub 2020 Mar 19.
8
Modulation of auxin formation by the cytosolic phenylalanine biosynthetic pathway.
Nat Chem Biol. 2020 Aug;16(8):850-856. doi: 10.1038/s41589-020-0519-8. Epub 2020 Apr 13.
9
DNA methylation in plants: mechanisms and tools for targeted manipulation.
New Phytol. 2020 Jul;227(1):38-44. doi: 10.1111/nph.16529. Epub 2020 Apr 13.
10
IPyA glucosylation mediates light and temperature signaling to regulate auxin-dependent hypocotyl elongation in .
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6910-6917. doi: 10.1073/pnas.2000172117. Epub 2020 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验