Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
Cold Spring Harb Perspect Biol. 2021 Mar 1;13(3):a039867. doi: 10.1101/cshperspect.a039867.
The major natural auxin in plants, indole-3-acetic acid (IAA), orchestrates a plethora of developmental responses that largely depend on the formation of auxin concentration gradients within plant tissues. Together with inter- and intracellular transport, IAA metabolism-which comprises biosynthesis, conjugation, and degradation-modulates auxin gradients and is therefore critical for plant growth. It is now very well established that IAA is mainly produced from Trp and that the IPyA pathway is a major and universally conserved biosynthetic route in plants, while other redundant pathways operate in parallel. Recent findings have shown that metabolic inactivation of IAA is also redundantly performed by oxidation and conjugation processes. An exquisite spatiotemporal expression of the genes for auxin synthesis and inactivation have been shown to drive several plant developmental processes. Moreover, a group of transcription factors and epigenetic regulators controlling the expression of auxin metabolic genes have been identified in past years, which are illuminating the road to understanding the molecular mechanisms behind the coordinated responses of local auxin metabolism to specific cues. Besides transcriptional regulation, subcellular compartmentalization of the IAA metabolism and posttranslational modifications of the metabolic enzymes are emerging as important contributors to IAA homeostasis. In this review, we summarize the current knowledge on (1) the pathways for IAA biosynthesis and inactivation in plants, (2) the influence of spatiotemporally regulated IAA metabolism on auxin-mediated responses, and (3) the regulatory mechanisms that modulate IAA levels in response to external and internal cues during plant development.
植物中的主要天然生长素吲哚-3-乙酸(IAA),协调了大量的发育反应,这些反应在很大程度上依赖于植物组织内生长素浓度梯度的形成。与细胞内和细胞间运输一起,IAA 代谢——包括生物合成、共轭和降解——调节生长素梯度,因此对植物生长至关重要。现在已经非常清楚,IAA 主要由色氨酸产生,而 IPyA 途径是植物中主要的和普遍保守的生物合成途径,而其他冗余途径则并行运作。最近的研究结果表明,IAA 的代谢失活也是通过氧化和共轭过程冗余地进行的。生长素合成和失活基因的精细时空表达被证明可以驱动几种植物发育过程。此外,近年来已经确定了一组转录因子和表观遗传调节剂,它们控制着生长素代谢基因的表达,这为理解局部生长素代谢对特定信号的协调反应背后的分子机制指明了道路。除了转录调控外,IAA 代谢的亚细胞区室化和代谢酶的翻译后修饰也被认为是 IAA 动态平衡的重要贡献者。在这篇综述中,我们总结了目前关于(1)植物中 IAA 生物合成和失活途径的知识,(2)时空调节的 IAA 代谢对生长素介导的反应的影响,以及(3)调节机制,这些机制可以响应植物发育过程中的外部和内部信号来调节 IAA 水平。