Albert Einstein College of Medicine, Department of Microbiology & Immunology, Bronx, New York, USA.
Albert Einstein College of Medicine, Department of Microbiology & Immunology, Bronx, New York, USA
mBio. 2021 Jan 12;12(1):e03100-20. doi: 10.1128/mBio.03100-20.
Ebola virus (EBOV) entry into host cells comprises stepwise and extensive interactions of the sole viral surface glycoprotein (GP) with multiple host factors. During the intricate process, following virus uptake and trafficking to late endosomal/lysosomal compartments, GP is proteolytically processed to cleaved GP (GP) by the endosomal proteases cathepsin B and L, unmasking GP's receptor-binding site. Engagement of GP with the universal filoviral intracellular receptor Niemann-Pick C1 (NPC1) eventually culminates in fusion between viral and cellular membranes, cytoplasmic escape of the viral nucleocapsid, and subsequent infection. Mechanistic delineation of the indispensable GP-NPC1-binding step has been severely hampered by the unavailability of a robust cell-based assay assessing interaction of GP with full-length endosomal NPC1. Here, we describe a novel assay to monitor GP-NPC1 engagement in intact, infected cells. Visualization of the subcellular localization of binding complexes is based on the principle of DNA-assisted, antibody-mediated proximity ligation. Virus-receptor binding monitored by proximity ligation was contingent on GP's proteolytic cleavage and was sensitive to perturbations in the GP-NPC1 interface. Our assay also specifically decoupled detection of virus-receptor binding from steps post-receptor binding, such as membrane fusion and infection. Testing of multiple FDA-approved small-molecule inhibitors revealed that drug treatments inhibited virus entry and GP-NPC1 recognition by distinctive mechanisms. Together, here we present a newly established proximity ligation assay, which will allow us to dissect cellular and viral requirements for filovirus-receptor binding and to delineate the mechanisms of action of inhibitors on filovirus entry in a cell-based system. Ebola virus causes episodic but increasingly frequent outbreaks of severe disease in Middle Africa, as shown by the recently overcome second largest outbreak on record in the Democratic Republic of Congo. Despite considerable effort, FDA-approved anti-filoviral therapeutics or targeted interventions are not available yet. Virus host-cell invasion represents an attractive target for antivirals; however, our understanding of the inhibitory mechanisms of novel therapeutics is often hampered by fragmented knowledge of the filovirus-host molecular interactions required for viral infection. To help close this critical knowledge gap, here, we report an assay to monitor binding of the EBOV glycoprotein to its receptor NPC1 in intact, infected cells. We demonstrate that our assay based on proximity ligation represents a powerful tool to delineate receptor-viral glycoprotein interactions. Similar assays can be utilized to examine receptor interactions of diverse viral surface proteins whose studies have been hampered until now by the lack of robust assays.
埃博拉病毒(EBOV)进入宿主细胞包括病毒表面糖蛋白(GP)与多种宿主因子逐步和广泛的相互作用。在这个复杂的过程中,病毒被摄取并运输到晚期内体/溶酶体区室后,GP 被内体蛋白酶组织蛋白酶 B 和 L 切割成裂解的 GP(GP),暴露出 GP 的受体结合位点。GP 与普遍的丝状病毒细胞内受体尼曼-皮克 C1(NPC1)的结合最终导致病毒和细胞膜融合,病毒核衣壳细胞质逃逸,随后感染。由于缺乏评估 GP 与全长内体 NPC1 相互作用的强大基于细胞的测定法,因此严重阻碍了对不可缺少的 GP-NPC1 结合步骤的机制阐述。在这里,我们描述了一种新的测定法,用于监测完整感染细胞中 GP-NPC1 的结合。结合复合物的亚细胞定位的可视化基于 DNA 辅助的抗体介导的邻近连接原理。通过邻近连接监测到的病毒-受体结合取决于 GP 的蛋白水解切割,并且对 GP-NPC1 界面的干扰敏感。我们的测定法还特异性地将病毒-受体结合的检测与受体结合后的步骤(例如膜融合和感染)分离。对多种 FDA 批准的小分子抑制剂的测试表明,药物治疗通过独特的机制抑制病毒进入和 GP-NPC1 的识别。总之,在这里,我们提出了一种新建立的邻近连接测定法,该测定法将使我们能够剖析丝状病毒-受体结合和在基于细胞的系统中阐明抑制剂对丝状病毒进入的作用机制所需的细胞和病毒要求。埃博拉病毒引起了中非地区间歇性但越来越频繁的严重疾病爆发,最近在刚果民主共和国爆发的第二大疫情就是例证。尽管付出了相当大的努力,但尚未获得 FDA 批准的抗丝状病毒疗法或靶向干预措施。病毒宿主细胞入侵是抗病毒药物的一个有吸引力的靶标;然而,由于对丝状病毒感染所需的病毒-宿主分子相互作用的了解不完整,我们对新型治疗药物的抑制机制的了解往往受到阻碍。为了帮助弥补这一关键知识差距,在这里,我们报告了一种监测完整感染细胞中 EBOV 糖蛋白与其受体 NPC1 结合的测定法。我们证明,我们基于邻近连接的测定法是阐明受体-病毒糖蛋白相互作用的有力工具。类似的测定法可用于研究那些研究受到阻碍的不同病毒表面蛋白的受体相互作用,这些测定法的研究受到阻碍,因为缺乏强大的测定法。