Suppr超能文献

一种使用在线心理健康问卷和血液生物标志物数据区分双相情感障碍和重度抑郁症的机器学习算法。

A machine learning algorithm to differentiate bipolar disorder from major depressive disorder using an online mental health questionnaire and blood biomarker data.

机构信息

Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.

Psyomics Ltd, Cambridge, UK.

出版信息

Transl Psychiatry. 2021 Jan 12;11(1):41. doi: 10.1038/s41398-020-01181-x.

Abstract

The vast personal and economic burden of mood disorders is largely caused by their under- and misdiagnosis, which is associated with ineffective treatment and worsening of outcomes. Here, we aimed to develop a diagnostic algorithm, based on an online questionnaire and blood biomarker data, to reduce the misdiagnosis of bipolar disorder (BD) as major depressive disorder (MDD). Individuals with depressive symptoms (Patient Health Questionnaire-9 score ≥5) aged 18-45 years were recruited online. After completing a purpose-built online mental health questionnaire, eligible participants provided dried blood spot samples for biomarker analysis and underwent the World Health Organization World Mental Health Composite International Diagnostic Interview via telephone, to establish their mental health diagnosis. Extreme Gradient Boosting and nested cross-validation were used to train and validate diagnostic models differentiating BD from MDD in participants who self-reported a current MDD diagnosis. Mean test area under the receiver operating characteristic curve (AUROC) for separating participants with BD diagnosed as MDD (N = 126) from those with correct MDD diagnosis (N = 187) was 0.92 (95% CI: 0.86-0.97). Core predictors included elevated mood, grandiosity, talkativeness, recklessness and risky behaviour. Additional validation in participants with no previous mood disorder diagnosis showed AUROCs of 0.89 (0.86-0.91) and 0.90 (0.87-0.91) for separating newly diagnosed BD (N = 98) from MDD (N = 112) and subclinical low mood (N = 120), respectively. Validation in participants with a previous diagnosis of BD (N = 45) demonstrated sensitivity of 0.86 (0.57-0.96). The diagnostic algorithm accurately identified patients with BD in various clinical scenarios, and could help expedite accurate clinical diagnosis and treatment of BD.

摘要

心境障碍的巨大个人和经济负担在很大程度上是由于其诊断不足和误诊所致,这与治疗效果不佳和病情恶化有关。在这里,我们旨在开发一种诊断算法,该算法基于在线问卷和血液生物标志物数据,以减少将双相情感障碍(BD)误诊为重度抑郁症(MDD)的情况。在线招募了年龄在 18-45 岁之间有抑郁症状(患者健康问卷-9 得分≥5)的个体。在完成专门的在线心理健康问卷后,符合条件的参与者提供了干血斑样本进行生物标志物分析,并通过电话接受了世界卫生组织世界心理健康综合国际诊断访谈,以确定他们的心理健康诊断。极端梯度增强和嵌套交叉验证用于训练和验证在自我报告当前 MDD 诊断的参与者中区分 BD 和 MDD 的诊断模型。用于区分将 BD 诊断为 MDD 的参与者(N=126)与具有正确 MDD 诊断的参与者(N=187)的测试区域下接收器工作特征曲线(AUROC)的平均值为 0.92(95%CI:0.86-0.97)。核心预测因子包括情绪升高、自大、健谈、鲁莽和冒险行为。在没有先前心境障碍诊断的参与者中进行的额外验证显示,用于区分新诊断的 BD(N=98)与 MDD(N=112)和亚临床情绪低落(N=120)的 AUROC 分别为 0.89(0.86-0.91)和 0.90(0.87-0.91)。在有 BD 先前诊断的参与者(N=45)中进行的验证显示,敏感性为 0.86(0.57-0.96)。该诊断算法在各种临床情况下准确识别出 BD 患者,有助于加快 BD 的准确临床诊断和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da4c/7804187/9246bf0d788b/41398_2020_1181_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验