Suppr超能文献

基于深度神经网络的 X 射线冠状病毒检测的高效方法。

An Efficient Method for Coronavirus Detection Through X-rays Using Deep Neural Network.

机构信息

Department of CSE, MVGR College of Engineering(A). Vizianagaram, A.P. India-535005.

Department of IT. MVGR College of Engineering(A). Vizianagaram, A.P. India-535005.

出版信息

Curr Med Imaging. 2022;18(6):587-592. doi: 10.2174/1573405617999210112193220.

Abstract

BACKGROUND

Coronavirus (COVID-19) is a group of infectious diseases caused by related viruses called coronaviruses. In humans, the seriousness of infection caused by a coronavirus in the respiratory tract can vary from mild to lethal. A serious illness can be developed in old people and those with underlying medical problems like diabetes, cardiovascular disease, cancer, and chronic respiratory disease. For the diagnosis of coronavirus disease, due to the growing number of cases, a limited number of test kits for COVID-19 are available in the hospitals. Hence, it is important to implement an automated system as an immediate alternative diagnostic option to pause the spread of COVID-19 in the population.

OBJECTIVE

This paper proposes a deep learning model for the classification of coronavirus infected patient detection using chest X-ray radiographs.

METHODS

A fully connected convolutional neural network model is developed to classify healthy and diseased X-ray radiographs. The proposed neural network model consists of seven convolutional layers with the rectified linear unit, softmax (last layer) activation functions, and max-pooling layers which were trained using the publicly available COVID-19 dataset.

RESULTS AND CONCLUSION

For validation of the proposed model, the publicly available chest X-ray radiograph dataset consisting of COVID-19 and normal patient's images were used. Considering the performance of the results that are evaluated based on various evaluation metrics such as precision, recall, MSE, RMSE and accuracy, it is seen that the accuracy of the proposed CNN model is 98.07%.

摘要

背景

冠状病毒(COVID-19)是一组由称为冠状病毒的相关病毒引起的传染病。在人类中,呼吸道中冠状病毒感染的严重程度可以从轻度到致命不等。老年人和患有糖尿病、心血管疾病、癌症和慢性呼吸系统疾病等潜在医疗问题的人可能会患上严重疾病。由于病例数量不断增加,医院中 COVID-19 的检测试剂盒数量有限,因此需要实施自动化系统作为诊断冠状病毒病的替代方法,以阻止 COVID-19 在人群中的传播。

目的

本文提出了一种使用胸部 X 射线图像对冠状病毒感染患者进行分类的深度学习模型。

方法

开发了一种全连接卷积神经网络模型,用于对健康和患病 X 射线图像进行分类。所提出的神经网络模型由七个卷积层组成,具有修正线性单元、软最大(最后一层)激活函数和最大池化层,使用公开的 COVID-19 数据集进行训练。

结果与结论

为了验证所提出模型的有效性,使用了包含 COVID-19 和正常患者图像的公开胸部 X 射线图像数据集。考虑到基于各种评估指标(如精度、召回率、MSE、RMSE 和准确性)评估结果的性能,所提出的 CNN 模型的准确性为 98.07%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验