Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, 1 Boulevard Arago, Metz F-57078, France.
CReSTIC EA 3804, Université de Reims Champagne-Ardenne, Moulin de la Housse, Reims Cedex 02 BP39, F-51687, France.
J Chem Inf Model. 2021 Feb 22;61(2):795-809. doi: 10.1021/acs.jcim.0c01188. Epub 2021 Jan 14.
The independent gradient model (IGM) is a recent electron density-based computational method that enables to detect and quantify covalent and noncovalent interactions. When applied to large systems, the original version of the technique still relies on promolecular electron densities given by the sum of spherically averaged atomic electron distributions, which leads to approximate evaluations of the inter- and intramolecular interactions occurring in systems of biological interest. To overcome this drawback and perform IGM analyses based on quantum mechanically rigorous electron densities also for macromolecular systems, we coupled the IGM approach with the recently constructed libraries of extremely localized molecular orbitals (ELMOs) that allow fast and reliable reconstructions of polypeptide and protein electron densities. The validation tests performed on small polypeptides and peptide dimers have shown that the novel IGM-ELMO strategy provides results that are systematically closer to the fully quantum mechanical ones and outperforms the IGM method based on the crude promolecular approximation, but still keeping a quite low computational cost. The results of the test calculations carried out on proteins have also confirmed the trends observed for the IGM analyses conducted on small systems. This makes us envisage the future application of the novel IGM-ELMO approach to unravel complicated noncovalent interaction networks (e.g., in protein-protein contacts) or to rationally design new drugs through molecular docking calculations and virtual high-throughput screenings.
独立梯度模型(IGM)是一种最近基于电子密度的计算方法,可用于检测和量化共价和非共价相互作用。当应用于大型系统时,该技术的原始版本仍然依赖于由球形平均原子电子分布之和给出的预分子电子密度,这导致对生物相关系统中发生的分子间和分子内相互作用的近似评估。为了克服这一缺点,并基于量子力学严格的电子密度对大分子系统进行 IGM 分析,我们将 IGM 方法与最近构建的极端局域分子轨道(ELMO)库相结合,该库允许快速可靠地重建多肽和蛋白质电子密度。在小多肽和肽二聚体上进行的验证测试表明,新的 IGM-ELMO 策略提供的结果与完全量子力学的结果更系统地接近,并优于基于粗略预分子近似的 IGM 方法,但仍保持相当低的计算成本。在蛋白质上进行的测试计算的结果也证实了在小系统上进行的 IGM 分析中观察到的趋势。这使我们设想未来将新的 IGM-ELMO 方法应用于揭示复杂的非共价相互作用网络(例如,在蛋白质-蛋白质接触中),或通过分子对接计算和虚拟高通量筛选来合理设计新药物。