Suppr超能文献

基于机器学习方法对蜜蜂的化学急性接触毒性进行的计算机预测。

In silico prediction of chemical acute contact toxicity on honey bees via machine learning methods.

机构信息

Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.

Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.

出版信息

Toxicol In Vitro. 2021 Apr;72:105089. doi: 10.1016/j.tiv.2021.105089. Epub 2021 Jan 11.

Abstract

In recent years, the decline of honey bees and the collapse of bee colonies have caught the attention of ecologists, and the use of pesticides is one of the main reasons for the decline. Therefore, ecological risk assessment of pesticides is essential and necessary. In silico tools, such as QSAR models can play an important role in predicting physicochemical and biological properties of chemicals. In this study, a total of 54 classification models were developed by combination of 6 machine learning methods along with 9 kinds of molecular fingerprints based on the experimental honey bees acute contact toxicity data (LD) of 676 structurally diverse pesticides. The best model proposed was SVM algorithm combined with CDK extended fingerprint. The analysis of the applicability domain of the model successfully excluded some extreme molecules. Additionally, 9 structural alerts about honey bees acute contact toxicity were identified by information gain and substructure frequency analysis.

摘要

近年来,蜜蜂数量减少和蜂群崩溃引起了生态学家的关注,而杀虫剂的使用是导致蜜蜂数量减少的主要原因之一。因此,对杀虫剂进行生态风险评估是必要的。基于结构的定量构效关系(QSAR)模型等计算毒理学工具可以在预测化学品的物理化学和生物性质方面发挥重要作用。在这项研究中,我们基于 676 种结构多样的农药对蜜蜂急性接触毒性(LD)的实验数据,结合 9 种分子指纹,使用 6 种机器学习方法组合,共开发了 54 种分类模型。提出的最佳模型是 SVM 算法与 CDK 扩展指纹相结合。通过对模型的适用性域进行分析,成功排除了一些极端分子。此外,还通过信息增益和子结构频率分析确定了 9 个与蜜蜂急性接触毒性相关的结构警示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验