Suppr超能文献

生物学中的时标关联:早期动力学测量能否预测长期结果?

Connecting Timescales in Biology: Can Early Dynamical Measurements Predict Long-Term Outcomes?

机构信息

Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA; Laboratory of Systems Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA; Broad institute of Harvard and MIT, Cambridge, MA 02142, USA.

Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.

出版信息

Trends Cancer. 2021 Apr;7(4):301-308. doi: 10.1016/j.trecan.2020.12.008. Epub 2021 Jan 13.

Abstract

Prediction of long-term outcomes from short-term measurements remains a fundamental challenge. Quantitative assessment of signaling dynamics, and the resulting transcriptomic and proteomic responses, has yielded fundamental insights into cellular outcomes. However, the utility of these measurements is limited by their short timescale (hours to days), while the consequences of these events frequently unfold over longer timescales. Here, we discuss the predictive power of static and dynamic measurements, drawing examples from fields that have harnessed the predictive capabilities of such measurements. We then explore potential approaches to close this timescale gap using complementary measurements and computational approaches, focusing on the example of dynamic measurements of signaling factors and their impacts on cellular outcomes.

摘要

从短期测量结果预测长期结果仍然是一个基本挑战。对信号转导动力学的定量评估,以及由此产生的转录组学和蛋白质组学反应,为细胞结果提供了基本的见解。然而,这些测量的实用性受到其时间尺度(数小时到数天)的限制,而这些事件的后果通常需要更长的时间才能显现。在这里,我们讨论了静态和动态测量的预测能力,从利用这些测量的预测能力的各个领域中举例说明。然后,我们探讨了使用互补测量和计算方法来缩小这一时间尺度差距的潜在方法,重点是信号转导因子的动态测量及其对细胞结果的影响的例子。

相似文献

1
Connecting Timescales in Biology: Can Early Dynamical Measurements Predict Long-Term Outcomes?
Trends Cancer. 2021 Apr;7(4):301-308. doi: 10.1016/j.trecan.2020.12.008. Epub 2021 Jan 13.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
Time-Sensitive Aspects of Mars Sample Return (MSR) Science.
Astrobiology. 2022 Jun;22(S1):S81-S111. doi: 10.1089/AST.2021.0115. Epub 2022 May 19.
4
Oculomotor plant and neural dynamics suggest gaze control requires integration on distributed timescales.
J Physiol. 2022 Aug;600(16):3837-3863. doi: 10.1113/JP282496. Epub 2022 Jul 26.
6
Understanding and Engineering Chromatin as a Dynamical System across Length and Timescales.
Cell Syst. 2020 Nov 18;11(5):424-448. doi: 10.1016/j.cels.2020.09.011.
7
Differential responses of crop yields to multi-timescale drought in mainland China: Spatiotemporal patterns and climate drivers.
Sci Total Environ. 2024 Jan 1;906:167559. doi: 10.1016/j.scitotenv.2023.167559. Epub 2023 Oct 5.
8
Dynamical Timescale Explains Marginal Stability in Excitability Dynamics.
J Neurosci. 2017 Apr 26;37(17):4508-4524. doi: 10.1523/JNEUROSCI.2340-16.2017. Epub 2017 Mar 27.
9
The Interplay between Long- and Short-Range Temporal Correlations Shapes Cortex Dynamics across Vigilance States.
J Neurosci. 2017 Oct 18;37(42):10114-10124. doi: 10.1523/JNEUROSCI.0448-17.2017. Epub 2017 Sep 25.
10
Proteomic and computational methods in systems modeling of cellular signaling.
Curr Pharm Biotechnol. 2006 Jun;7(3):135-45. doi: 10.2174/138920106777549722.

引用本文的文献

1
Signals for antigen-independent differentiation of memory CD8 T cells.
Cell Mol Life Sci. 2021 Oct;78(19-20):6395-6408. doi: 10.1007/s00018-021-03912-9. Epub 2021 Aug 16.

本文引用的文献

1
Cycling cancer persister cells arise from lineages with distinct programs.
Nature. 2021 Aug;596(7873):576-582. doi: 10.1038/s41586-021-03796-6. Epub 2021 Aug 11.
3
Integrating single-cell RNA-seq and imaging with SCOPE-seq2.
Sci Rep. 2020 Nov 10;10(1):19482. doi: 10.1038/s41598-020-76599-w.
4
A Molecular Signal Integration Network Underpinning Arabidopsis Seed Germination.
Curr Biol. 2020 Oct 5;30(19):3703-3712.e4. doi: 10.1016/j.cub.2020.07.012. Epub 2020 Aug 6.
5
A Switch in p53 Dynamics Marks Cells That Escape from DSB-Induced Cell Cycle Arrest.
Cell Rep. 2020 Aug 4;32(5):107995. doi: 10.1016/j.celrep.2020.107995.
6
Heterogeneity and fate choice: T cell exhaustion in cancer and chronic infections.
Curr Opin Immunol. 2019 Jun;58:98-103. doi: 10.1016/j.coi.2019.04.014. Epub 2019 Jun 8.
7
Resolving genetic heterogeneity in cancer.
Nat Rev Genet. 2019 Jul;20(7):404-416. doi: 10.1038/s41576-019-0114-6.
8
Characterization of cell fate probabilities in single-cell data with Palantir.
Nat Biotechnol. 2019 Apr;37(4):451-460. doi: 10.1038/s41587-019-0068-4. Epub 2019 Mar 21.
9
SCOPE-Seq: a scalable technology for linking live cell imaging and single-cell RNA sequencing.
Genome Biol. 2018 Dec 24;19(1):227. doi: 10.1186/s13059-018-1607-x.
10
Fluctuations in p53 Signaling Allow Escape from Cell-Cycle Arrest.
Mol Cell. 2018 Aug 16;71(4):581-591.e5. doi: 10.1016/j.molcel.2018.06.031. Epub 2018 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验