Suppr超能文献

冠状动脉疾病患者血流动力学、解剖学和生化斑块特征之间的空间关系。

Spatial relationships among hemodynamic, anatomic, and biochemical plaque characteristics in patients with coronary artery disease.

作者信息

Varshney Anubodh S, Coskun Ahmet U, Siasos Gerasimos, Maynard Charles C, Pu Zhongyue, Croce Kevin J, Cefalo Nicholas V, Cormier Michelle A, Fotiadis Dimitris, Stefanou Kostas, Papafaklis Michail I, Michalis Lampros, VanOosterhout Stacie, Mulder Abbey, Madder Ryan D, Stone Peter H

机构信息

Brigham and Women's Hospital Heart & Vascular Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.

Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA.

出版信息

Atherosclerosis. 2021 Mar;320:98-104. doi: 10.1016/j.atherosclerosis.2020.12.018. Epub 2020 Dec 28.

Abstract

BACKGROUND AND AIMS

We aimed to characterize the spatial proximity of plaque destabilizing features local endothelial shear stress (ESS), minimal luminal area (MLA), plaque burden (PB), and near-infrared spectroscopy (NIRS) lipid signal in high- vs. low-risk plaques.

METHODS

Coronary arteries imaged with angiography and NIRS-intravascular ultrasound (IVUS) underwent 3D reconstruction and computational fluid dynamics calculations of local ESS. ESS, PB, MLA, and lipid core burden index (LCBI), for each 3-mm arterial segment were obtained in arteries with large lipid-rich plaque (LRP) vs. arteries with smaller LRP. The locations of the MLA, minimum ESS (minESS), maximum ESS (maxESS), maximum PB (maxPB), and maximum LCBI in a 4-mm segment (maxLCBI) were determined along the length of each plaque.

RESULTS

The spatial distributions of minESS, maxESS, maxPB, and maxLCBI, in reference to the MLA, were significantly heterogeneous within and between each variable. The location of maxLCBI was spatially discordant from sites of the MLA (p<0.0001), minESS (p = 0.003), and maxESS (p = 0.003) in arteries with large LRP (maxLCBI ≥ 400) and non-large LRP. Large LRP arteries had higher maxESS (9.31 ± 4.78 vs. 6.32 ± 5.54 Pa; p = 0.023), lower minESS (0.41 ± 0.16 vs. 0.61 ± 0.26 Pa; p = 0.007), smaller MLA (3.54 ± 1.22 vs. 5.14 ± 2.65 mm; p = 0.002), and larger maxPB (70.64 ± 9.95% vs. 56.70 ± 13.34%, p<0.001) compared with non-large LRP arteries.

CONCLUSIONS

There is significant spatial heterogeneity of destabilizing plaque features along the course of both large and non-large LRPs. Large LRPs exhibit significantly more abnormal destabilizing plaque features than non-large LRPs. Prospective, longitudinal studies are required to determine which patterns of heterogeneous destabilizing features act synergistically to cause plaque destabilization.

摘要

背景与目的

我们旨在描述高危与低危斑块中斑块不稳定特征(局部内皮剪切应力(ESS)、最小管腔面积(MLA)、斑块负荷(PB))与近红外光谱(NIRS)脂质信号之间的空间邻近关系。

方法

对采用血管造影和NIRS血管内超声(IVUS)成像的冠状动脉进行三维重建,并计算局部ESS的计算流体动力学。在富含脂质的大斑块(LRP)动脉与LRP较小的动脉中,获取每3毫米动脉节段的ESS、PB、MLA和脂质核心负荷指数(LCBI)。沿着每个斑块的长度确定4毫米节段中MLA、最小ESS(minESS)、最大ESS(maxESS)、最大PB(maxPB)和最大LCBI(maxLCBI)的位置。

结果

相对于MLA,minESS、maxESS、maxPB和maxLCBI的空间分布在每个变量内部和之间均存在显著异质性。在富含脂质的大斑块(maxLCBI≥400)和非大斑块的动脉中,maxLCBI的位置在空间上与MLA位点(p<0.0001)、minESS(p = 0.003)和maxESS(p = 0.003)不一致。与非大斑块的LRP动脉相比,大斑块的LRP动脉具有更高的maxESS(9.31±4.78 vs. 6.32±5.54 Pa;p = 0.023)、更低的minESS(0.41±0.16 vs. 0.61±0.26 Pa;p = 0.007)、更小的MLA(3.54±1.22 vs. 5.14±2.65 mm;p = 0.002)和更大的maxPB(70.64±9.95% vs. 56.70±13.34%,p<0.001)。

结论

在大斑块和非大斑块的LRP过程中,斑块不稳定特征存在显著的空间异质性。大斑块的LRP比非大斑块的LRP表现出明显更多的异常斑块不稳定特征。需要进行前瞻性纵向研究,以确定哪些异质不稳定特征模式协同作用导致斑块不稳定。

相似文献

1
Spatial relationships among hemodynamic, anatomic, and biochemical plaque characteristics in patients with coronary artery disease.
Atherosclerosis. 2021 Mar;320:98-104. doi: 10.1016/j.atherosclerosis.2020.12.018. Epub 2020 Dec 28.
3
Endothelial shear stress computed from coronary computed tomography angiography: A direct comparison to intravascular ultrasound.
J Cardiovasc Comput Tomogr. 2023 May-Jun;17(3):201-210. doi: 10.1016/j.jcct.2023.03.009. Epub 2023 Apr 17.
6
Combined IVUS and NIRS detection of fibroatheromas: histopathological validation in human coronary arteries.
JACC Cardiovasc Imaging. 2015 Feb;8(2):184-94. doi: 10.1016/j.jcmg.2014.09.021. Epub 2015 Jan 7.
9
In vivo comparison between cardiac allograft vasculopathy and native atherosclerosis using near-infrared spectroscopy and intravascular ultrasound.
Eur Heart J Cardiovasc Imaging. 2015 Sep;16(9):985-91. doi: 10.1093/ehjci/jev017. Epub 2015 Feb 25.
10
Lipid-rich Plaques Detected by Near-infrared Spectroscopy Are More Frequently Exposed to High Shear Stress.
J Cardiovasc Transl Res. 2021 Jun;14(3):416-425. doi: 10.1007/s12265-020-10072-x. Epub 2020 Oct 9.

引用本文的文献

本文引用的文献

1
Initial Invasive or Conservative Strategy for Stable Coronary Disease.
N Engl J Med. 2020 Apr 9;382(15):1395-1407. doi: 10.1056/NEJMoa1915922. Epub 2020 Mar 30.
3
Heterogeneity of Plaque Structural Stress Is Increased in Plaques Leading to MACE: Insights From the PROSPECT Study.
JACC Cardiovasc Imaging. 2020 May;13(5):1206-1218. doi: 10.1016/j.jcmg.2019.05.024. Epub 2019 Jul 17.
4
High Coronary Shear Stress in Patients With Coronary Artery Disease Predicts Myocardial Infarction.
J Am Coll Cardiol. 2018 Oct 16;72(16):1926-1935. doi: 10.1016/j.jacc.2018.07.075.
6
Implications of the local hemodynamic forces on the formation and destabilization of neoatherosclerotic lesions.
Int J Cardiol. 2018 Dec 1;272:7-12. doi: 10.1016/j.ijcard.2018.06.065. Epub 2018 Jun 19.
9
Physiological Predictors of Acute Coronary Syndromes: Emerging Insights From the Plaque to the Vulnerable Patient.
JACC Cardiovasc Interv. 2017 Dec 26;10(24):2539-2547. doi: 10.1016/j.jcin.2017.08.059.
10
Role of Low Endothelial Shear Stress and Plaque Characteristics in the Prediction of Nonculprit Major Adverse Cardiac Events: The PROSPECT Study.
JACC Cardiovasc Imaging. 2018 Mar;11(3):462-471. doi: 10.1016/j.jcmg.2017.01.031. Epub 2017 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验