Suppr超能文献

解析神奇尺寸半导体纳米晶体的生长机制

Unraveling the Growth Mechanism of Magic-Sized Semiconductor Nanocrystals.

作者信息

Mule Aniket S, Mazzotti Sergio, Rossinelli Aurelio A, Aellen Marianne, Prins P Tim, van der Bok Johanna C, Solari Simon F, Glauser Yannik M, Kumar Priyank V, Riedinger Andreas, Norris David J

机构信息

Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.

Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands.

出版信息

J Am Chem Soc. 2021 Feb 3;143(4):2037-2048. doi: 10.1021/jacs.0c12185. Epub 2021 Jan 20.

Abstract

Magic-sized clusters (MSCs) of semiconductor are typically defined as specific molecular-scale arrangements of atoms that exhibit enhanced stability. They often grow in discrete jumps, creating a series of crystallites, without the appearance of intermediate sizes. However, despite their long history, the mechanism behind their special stability and growth remains poorly understood. It is particularly difficult to explain experiments that have shown discrete evolution of MSCs to larger sizes well beyond the "cluster" regime and into the size range of colloidal quantum dots. Here, we study the growth of MSCs, including these larger magic-sized CdSe nanocrystals, to unravel the underlying growth mechanism. We first introduce a synthetic protocol that yields a series of nine magic-sized nanocrystals of increasing size. By investigating these crystallites, we obtain important clues about the mechanism. We then develop a microscopic model that uses classical nucleation theory to determine kinetic barriers and simulate the growth. We show that magic-sized nanocrystals are consistent with a series of zinc-blende crystallites that grow layer by layer under surface-reaction-limited conditions. They have a tetrahedral shape, which is preserved when a monolayer is added to any of its four identical facets, leading to a series of discrete nanocrystals with special stability. Our analysis also identifies strong similarities with the growth of semiconductor nanoplatelets, which we then exploit to further increase the size range of our magic-sized nanocrystals. Although we focus here on CdSe, these results reveal a fundamental growth mechanism that can provide a different approach to nearly monodisperse nanocrystals.

摘要

半导体的魔尺寸团簇(MSCs)通常被定义为具有增强稳定性的特定原子分子尺度排列。它们常常以离散跳跃的方式生长,形成一系列微晶,没有中间尺寸的出现。然而,尽管它们历史悠久,但其特殊稳定性和生长背后的机制仍知之甚少。特别难以解释的是那些实验,这些实验表明MSCs向更大尺寸的离散演化,远远超出了“团簇”范围,进入了胶体量子点的尺寸范围。在这里,我们研究MSCs的生长,包括这些更大的魔尺寸CdSe纳米晶体,以揭示其潜在的生长机制。我们首先引入一种合成方案,该方案可产生一系列尺寸不断增加的九种魔尺寸纳米晶体。通过研究这些微晶,我们获得了有关该机制的重要线索。然后,我们开发了一个微观模型,该模型使用经典成核理论来确定动力学势垒并模拟生长。我们表明,魔尺寸纳米晶体与一系列闪锌矿微晶一致,这些微晶在表面反应受限的条件下逐层生长。它们具有四面体形状,当在其四个相同晶面中的任何一个上添加单层时,该形状得以保留,从而产生一系列具有特殊稳定性的离散纳米晶体。我们的分析还发现与半导体纳米片的生长有很强的相似性,然后我们利用这一点进一步扩大了我们魔尺寸纳米晶体的尺寸范围。尽管我们这里重点关注CdSe,但这些结果揭示了一种基本的生长机制,可为近乎单分散的纳米晶体提供一种不同的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验