Delacroix Simon, Igoa Fernando, Song Yang, Le Godec Yann, Coelho-Diogo Cristina, Gervais Christel, Rousse Gwenaelle, Portehault David
Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005, Paris, France.
Sorbonne Université, CNRS, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 place Jussieu, F-75005, Paris, France.
Inorg Chem. 2021 Apr 5;60(7):4252-4260. doi: 10.1021/acs.inorgchem.0c03501. Epub 2021 Jan 22.
Boron-rich solids exhibit specific crystal structures and unique properties, which are only very scarcely addressed in nanoparticles. In this work, we address the original inorganic structural chemistry and reactivity of boron-rich nanoparticles, by reporting the first occurrence of sodium carbaboride nanocrystals based on the NaBC crystal structure. To design these sub-10 nm nano-objects, we use liquid-phase synthesis in molten salts at 900 °C. By combining a set of characterization tools including powder X-ray powder diffraction, transmission electron microscopy, solid-state nuclear magnetic resonance coupled to DFT modeling, and X-ray photoelectron spectroscopy, we demonstrate that these nanocrystals deviate from the ideal stoichiometry reported for the bulk compound. We suggest that the carbon and sodium contents compensate each other to ensure that the octahedral cluster-based framework is stabilized by fulfilling an electron counting rule. These nanocrystals encompass substituted octahedral covalent structural building units not reported in the related bulk compound. They then shed new light on the ability of nanoparticles to host wide solid solution ranges in covalent solids and then to yield new solids. We finally show that these nanocrystals are efficient single sources of boron and carbon to form a nanostructured boron carbide, thus paving the way to new nanostructured materials.
富含硼的固体具有特定的晶体结构和独特的性质,而在纳米颗粒中对这些方面的研究却非常少。在这项工作中,我们通过报道基于NaBC晶体结构的碳硼化钠纳米晶体的首次出现,来探讨富含硼的纳米颗粒的原始无机结构化学和反应活性。为了制备这些尺寸小于10纳米的纳米物体,我们在900℃的熔盐中采用液相合成法。通过结合一系列表征工具,包括粉末X射线粉末衍射、透射电子显微镜、与密度泛函理论建模相结合的固态核磁共振以及X射线光电子能谱,我们证明这些纳米晶体偏离了大块化合物所报道的理想化学计量比。我们认为碳和钠的含量相互补偿,以确保基于八面体簇的框架通过满足电子计数规则而得以稳定。这些纳米晶体包含了在相关大块化合物中未报道的取代八面体共价结构构建单元。它们为纳米颗粒在共价固体中容纳广泛的固溶体范围并进而产生新固体的能力提供了新的见解。我们最终表明,这些纳米晶体是形成纳米结构碳化硼的高效硼和碳的单一来源,从而为新型纳米结构材料铺平了道路。