European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain 08003.
Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
Trends Parasitol. 2021 May;37(5):401-413. doi: 10.1016/j.pt.2020.12.008. Epub 2021 Jan 20.
Plasmodium falciparum pathogenesis is complex and intimately connected to vascular physiology. This is exemplified by cerebral malaria (CM), a neurovascular complication that accounts for most of the malaria deaths worldwide. P. falciparum sequestration in the brain microvasculature is a hallmark of CM and is not replicated in animal models. Numerous aspects of the disease are challenging to fully understand from clinical studies, such as parasite binding tropism or causal pathways in blood-brain barrier breakdown. Recent bioengineering approaches allow for the generation of 3D microvessels and organ-specific vasculature that provide precise control of vessel architecture and flow dynamics, and hold great promise for malaria research. Here, we discuss recent and future applications of bioengineered microvessels in malaria pathogenesis research.
疟原虫致病机制复杂,与血管生理学密切相关。这一点以脑型疟疾(CM)为例,CM 是一种神经血管并发症,是全球疟疾死亡的主要原因。疟原虫在脑微血管中的寄生是 CM 的一个标志,但在动物模型中无法复制。从临床研究中很难完全理解疾病的许多方面,例如寄生虫结合的倾向性或血脑屏障破坏的因果途径。最近的生物工程方法允许生成 3D 微血管和器官特异性血管,从而可以精确控制血管结构和流动动力学,这为疟疾研究带来了巨大的希望。在这里,我们讨论了生物工程微血管在疟疾发病机制研究中的最新和未来应用。