Suppr超能文献

基于语义的医疗保健大数据管理方法:调查。

A Semantic-Based Approach for Managing Healthcare Big Data: A Survey.

机构信息

Yarmouk University, Irbid, Jordan.

出版信息

J Healthc Eng. 2020 Nov 23;2020:8865808. doi: 10.1155/2020/8865808. eCollection 2020.

Abstract

Healthcare information systems can reduce the expenses of treatment, foresee episodes of pestilences, help stay away from preventable illnesses, and improve personal life satisfaction. As of late, considerable volumes of heterogeneous and differing medicinal services data are being produced from different sources covering clinic records of patients, lab results, and wearable devices, making it hard for conventional data processing to handle and manage this amount of data. Confronted with the difficulties and challenges facing the process of managing healthcare big data such as volume, velocity, and variety, healthcare information systems need to use new methods and techniques for managing and processing such data to extract useful information and knowledge. In the recent few years, a large number of organizations and companies have shown enthusiasm for using semantic web technologies with healthcare big data to convert data into knowledge and intelligence. In this paper, we review the state of the art on the semantic web for the healthcare industry. Based on our literature review, we will discuss how different techniques, standards, and points of view created by the semantic web community can participate in addressing the challenges related to healthcare big data.

摘要

医疗保健信息系统可以降低治疗费用,预测疫病爆发,帮助预防可预防的疾病,并提高个人生活满意度。最近,大量来自不同来源的异构和不同的医疗服务数据正在产生,涵盖患者的临床记录、实验室结果和可穿戴设备,这使得传统的数据处理难以处理和管理如此大量的数据。面对管理医疗保健大数据(如数量、速度和多样性)过程中面临的困难和挑战,医疗保健信息系统需要使用新的方法和技术来管理和处理这些数据,以提取有用的信息和知识。在最近几年,许多组织和公司都热衷于使用语义 Web 技术与医疗保健大数据相结合,将数据转化为知识和智能。在本文中,我们回顾了医疗行业语义 Web 的最新技术。基于我们的文献综述,我们将讨论语义 Web 社区创建的不同技术、标准和观点如何参与解决与医疗保健大数据相关的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验