Suppr超能文献

基于分数规划的监督特征选择的神经动力优化方法。

A neurodynamic optimization approach to supervised feature selection via fractional programming.

机构信息

Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, 475004, China; Institute of Data and Knowledge Engineering, School of Computer and Information Engineering, Henan University, Kaifeng, 475004, China; School of Computer Science and Engineering, Southeast University, Nanjing, 211189, China.

School of Computer Science and Engineering, Southeast University, Nanjing, 211189, China; Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing, 211189, China.

出版信息

Neural Netw. 2021 Apr;136:194-206. doi: 10.1016/j.neunet.2021.01.004. Epub 2021 Jan 14.

Abstract

Feature selection is an important issue in machine learning and data mining. Most existing feature selection methods are greedy in nature thus are prone to sub-optimality. Though some global feature selection methods based on unsupervised redundancy minimization can potentiate clustering performance improvements, their efficacy for classification may be limited. In this paper, a neurodynamics-based holistic feature selection approach is proposed via feature redundancy minimization and relevance maximization. An information-theoretic similarity coefficient matrix is defined based on multi-information and entropy to measure feature redundancy with respect to class labels. Supervised feature selection is formulated as a fractional programming problem based on the similarity coefficients. A neurodynamic approach based on two one-layer recurrent neural networks is developed for solving the formulated feature selection problem. Experimental results with eight benchmark datasets are discussed to demonstrate the global convergence of the neural networks and superiority of the proposed neurodynamic approach to several existing feature selection methods in terms of classification accuracy, precision, recall, and F-measure.

摘要

特征选择是机器学习和数据挖掘中的一个重要问题。大多数现有的特征选择方法本质上是贪婪的,因此容易出现次优性。虽然一些基于无监督冗余最小化的全局特征选择方法可以提高聚类性能,但它们对分类的效果可能有限。本文提出了一种基于神经动力学的整体特征选择方法,通过特征冗余最小化和相关性最大化来实现。基于多信息和熵定义了一个信息论相似系数矩阵来度量特征相对于类别标签的冗余度。基于相似系数,将监督特征选择公式化为分数规划问题。提出了一种基于两个单层递归神经网络的神经动力学方法来求解所提出的特征选择问题。通过八个基准数据集的实验结果,讨论了神经网络的全局收敛性,以及与几种现有特征选择方法相比,所提出的神经动力学方法在分类准确性、精度、召回率和 F 值方面的优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验