Suppr超能文献

基于改进的深度卷积神经网络-快速傅里叶变换增强的端到端自动潜指纹识别

End-to-End Automated Latent Fingerprint Identification With Improved DCNN-FFT Enhancement.

作者信息

Deshpande Uttam U, Malemath V S, Patil Shivanand M, Chaugule Sushma V

机构信息

Department of Electronics and Communication Engineering, KLS Gogte Institute of Technology, Belagavi, India.

Department of Computer Science and Engineering, KLE Dr. M. S. Sheshgiri College of Engineering, and Technology, Belagavi, India.

出版信息

Front Robot AI. 2020 Nov 30;7:594412. doi: 10.3389/frobt.2020.594412. eCollection 2020.

Abstract

Automatic Latent Fingerprint Identification Systems (AFIS) are most widely used by forensic experts in law enforcement and criminal investigations. One of the critical steps used in automatic latent fingerprint matching is to automatically extract reliable minutiae from fingerprint images. Hence, minutiae extraction is considered to be a very important step in AFIS. The performance of such systems relies heavily on the quality of the input fingerprint images. Most of the state-of-the-art AFIS failed to produce good matching results due to poor ridge patterns and the presence of background noise. To ensure the robustness of fingerprint matching against low quality latent fingerprint images, it is essential to include a good fingerprint enhancement algorithm before minutiae extraction and matching. In this paper, we have proposed an end-to-end fingerprint matching system to automatically enhance, extract minutiae, and produce matching results. To achieve this, we have proposed a method to automatically enhance the poor-quality fingerprint images using the "Automated Deep Convolutional Neural Network (DCNN)" and "Fast Fourier Transform (FFT)" filters. The Deep Convolutional Neural Network (DCNN) produces a frequency enhanced map from fingerprint domain knowledge. We propose an "FFT Enhancement" algorithm to enhance and extract the ridges from the frequency enhanced map. Minutiae from the enhanced ridges are automatically extracted using a proposed "Automated Latent Minutiae Extractor (ALME)". Based on the extracted minutiae, the fingerprints are automatically aligned, and a matching score is calculated using a proposed "Frequency Enhanced Minutiae Matcher (FEMM)" algorithm. Experiments are conducted on FVC2002, FVC2004, and NIST SD27 latent fingerprint databases. The minutiae extraction results show significant improvement in precision, recall, and F1 scores. We obtained the highest Rank-1 identification rate of 100% for FVC2002/2004 and 84.5% for NIST SD27 fingerprint databases. The matching results reveal that the proposed system outperforms state-of-the-art systems.

摘要

自动潜指纹识别系统(AFIS)在执法和刑事调查中被法医专家广泛使用。自动潜指纹匹配中使用的关键步骤之一是从指纹图像中自动提取可靠的细节特征。因此,细节特征提取被认为是AFIS中非常重要的一步。此类系统的性能在很大程度上依赖于输入指纹图像的质量。由于纹路模式不佳和背景噪声的存在,大多数先进的AFIS未能产生良好的匹配结果。为确保指纹匹配针对低质量潜指纹图像的鲁棒性,在细节特征提取和匹配之前包含一个良好的指纹增强算法至关重要。在本文中,我们提出了一种端到端的指纹匹配系统,以自动增强、提取细节特征并产生匹配结果。为实现这一目标,我们提出了一种使用“自动深度卷积神经网络(DCNN)”和“快速傅里叶变换(FFT)”滤波器自动增强低质量指纹图像的方法。深度卷积神经网络(DCNN)从指纹领域知识生成频率增强图。我们提出一种“FFT增强”算法,以从频率增强图中增强并提取纹路。使用提出的“自动潜细节特征提取器(ALME)”自动从增强的纹路上提取细节特征。基于提取的细节特征,自动对齐指纹,并使用提出的“频率增强细节特征匹配器(FEMM)”算法计算匹配分数。在FVC2002、FVC2004和NIST SD27潜指纹数据库上进行了实验。细节特征提取结果在精度、召回率和F1分数方面有显著提高。对于FVC2002/2004,我们获得了最高的100%的一级识别率,对于NIST SD27指纹数据库,识别率为84.5%。匹配结果表明,所提出的系统优于现有系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bad/7805758/8226ddc2c864/frobt-07-594412-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验