Suppr超能文献

使用分裂荧光素酶测定法和抗单纯疱疹病毒糖蛋白单克隆抗体预测gD与gH/gL之间的功能性结合位点。

Using Split Luciferase Assay and anti-HSV Glycoprotein Monoclonal Antibodies to Predict a Functional Binding Site Between gD and gH/gL.

作者信息

Atanasiu Doina, Saw Wan Ting, Cairns Tina M, Eisenberg Roselyn J, Cohen Gary H

机构信息

Department of Basic and Translational Science, School of Dental Medicine

Department of Basic and Translational Science, School of Dental Medicine.

出版信息

J Virol. 2021 Mar 25;95(8). doi: 10.1128/JVI.00053-21. Epub 2021 Jan 27.

Abstract

Herpes simplex virus (HSV) entry and cell-cell fusion require glycoproteins gD, gH/gL, and gB. HSV entry begins with gD binding its receptor (nectin-1), which then activates gH/gL to enable the conversion of pre-fusion gB to its active form to promote membrane fusion. Virus-neutralizing monoclonal antibodies (Mabs) interfere with one or more of these steps and localization of their epitopes identifies functional sites on each protein. Utilizing this approach, we have identified the gH/gL binding face on gD and the corresponding gD binding site on gH/gL. Here, we used combinations of these Mabs to define the orientation of gD and gH/gL relative to each other. We reasoned that if two Mabs, one directed at gD and the other at gH/gL, block fusion more effectively than when either were used alone (additive), then their epitopes would be spatially distanced and binding of one would not directly interfere with binding of the other during fusion. However, if the two Mabs blocked fusion with equal or lesser efficacy that when either were used alone (indifferent), we propose that their epitopes would be in close proximity in the complex. Using a live cell fusion assay, we found that some Mab pairings blocked the fusion with different mechanisms while other had a similar mechanisms of action. Grouping the different combinations of antibodies into indifferent and additive groups, we present a model for the orientation of gD vis-à-vis gH/gL in the complex. Virus entry and cell-cell fusion mediated by HSV require four essential glycoproteins, gD, gH/gL, gB and a gD receptor. Virus-neutralizing antibodies directed against any of these proteins bind to residues within key functional sites and interfere with essential steps in the fusion pathway. Thus, the epitopes of these Mabs overlap and point to critical, functional sites on their target proteins. Here, we combined gD and gH/gL antibodies to determine whether they work in an additive or non-additive (indifferent) fashion to block specific events in glycoprotein-driven cell-cell fusion. Identifying combinations of antibodies that have additive effects will help in the rational design of an effective therapeutic "polyclonal antibody" to treat HSV disease. In addition, identification of the exact contact regions between gD and gH/gL can inform the design of small molecules that would interfere with the gD-gH/gL complex formation, thus preventing the virus from entering the host cell.

摘要

单纯疱疹病毒(HSV)的进入及细胞间融合需要糖蛋白gD、gH/gL和gB。HSV的进入始于gD与其受体(nectin-1)结合,随后激活gH/gL,使前融合态的gB转变为活性形式以促进膜融合。病毒中和单克隆抗体(Mab)会干扰这些步骤中的一个或多个,其表位的定位可确定每种蛋白上的功能位点。利用这种方法,我们已确定了gD上的gH/gL结合面以及gH/gL上相应的gD结合位点。在此,我们使用这些单克隆抗体的组合来确定gD和gH/gL相对于彼此的取向。我们推断,如果两种单克隆抗体,一种针对gD,另一种针对gH/gL,比单独使用时更有效地阻断融合(相加作用),那么它们的表位在空间上会有一定距离,且在融合过程中一种的结合不会直接干扰另一种的结合。然而,如果这两种单克隆抗体阻断融合的效果与单独使用时相同或更弱(无差异作用),我们认为它们的表位在复合物中会靠得很近。通过活细胞融合试验,我们发现一些单克隆抗体组合以不同机制阻断融合,而其他组合则具有相似的作用机制。将抗体的不同组合分为无差异组和相加组后,我们提出了复合物中gD相对于gH/gL取向的模型。HSV介导的病毒进入及细胞间融合需要四种必需糖蛋白,即gD、gH/gL、gB和一种gD受体。针对这些蛋白中任何一种的病毒中和抗体与关键功能位点内的残基结合,并干扰融合途径中的关键步骤。因此,这些单克隆抗体的表位重叠,并指向其靶蛋白上的关键功能位点。在此,我们联合使用gD和gH/gL抗体来确定它们是以相加还是非相加(无差异)方式发挥作用,以阻断糖蛋白驱动的细胞间融合中的特定事件。确定具有相加作用的抗体组合将有助于合理设计有效的治疗性“多克隆抗体”来治疗HSV疾病。此外,确定gD和gH/gL之间的确切接触区域可为干扰gD - gH/gL复合物形成从而阻止病毒进入宿主细胞的小分子设计提供信息。

相似文献

2
Using Antibodies and Mutants To Localize the Presumptive gH/gL Binding Site on Herpes Simplex Virus gD.
J Virol. 2018 Nov 27;92(24). doi: 10.1128/JVI.01694-18. Print 2018 Dec 15.
9
Dissection of the antibody response against herpes simplex virus glycoproteins in naturally infected humans.
J Virol. 2014 Nov;88(21):12612-22. doi: 10.1128/JVI.01930-14. Epub 2014 Aug 20.

引用本文的文献

1
Computational design and evaluation of multiepitope vaccines against herpes simplex virus type 1.
Front Immunol. 2025 Jun 4;16:1581571. doi: 10.3389/fimmu.2025.1581571. eCollection 2025.
2
Herpes simplex virus 1 envelope glycoprotein C shields glycoprotein D to protect virions from entry-blocking antibodies.
J Virol. 2025 Apr 15;99(4):e0009025. doi: 10.1128/jvi.00090-25. Epub 2025 Mar 26.
4
Allosteric mechanism of membrane fusion activation in a herpesvirus.
bioRxiv. 2024 Sep 21:2024.09.20.610514. doi: 10.1101/2024.09.20.610514.
7
Membrane fusion, potential threats, and natural antiviral drugs of pseudorabies virus.
Vet Res. 2023 May 2;54(1):39. doi: 10.1186/s13567-023-01171-z.
10
Herpes Simplex Virus 1 Entry Glycoproteins Form Complexes before and during Membrane Fusion.
mBio. 2022 Oct 26;13(5):e0203922. doi: 10.1128/mbio.02039-22. Epub 2022 Aug 16.

本文引用的文献

5
Evaluation of drug combination effect using a Bliss independence dose-response surface model.
Stat Biopharm Res. 2018;10(2):112-122. doi: 10.1080/19466315.2018.1437071. Epub 2018 Feb 13.
6
HCMV trimer- and pentamer-specific antibodies synergize for virus neutralization but do not correlate with congenital transmission.
Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3728-3733. doi: 10.1073/pnas.1814835116. Epub 2019 Feb 7.
7
Using Antibodies and Mutants To Localize the Presumptive gH/gL Binding Site on Herpes Simplex Virus gD.
J Virol. 2018 Nov 27;92(24). doi: 10.1128/JVI.01694-18. Print 2018 Dec 15.
8
Combination therapy with anti-HIV-1 antibodies maintains viral suppression.
Nature. 2018 Sep;561(7724):479-484. doi: 10.1038/s41586-018-0531-2. Epub 2018 Sep 26.
10
Synergy evaluation of anti-Herpes Simplex Virus type 1 and 2 compounds acting on different steps of virus life cycle.
Antiviral Res. 2018 Mar;151:71-77. doi: 10.1016/j.antiviral.2018.01.009. Epub 2018 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验