Suppr超能文献

基于混合时域和小波时频特征的心电信号分类的极限学习机

Extreme Learning Machine for Heartbeat Classification with Hybrid Time-Domain and Wavelet Time-Frequency Features.

机构信息

School of Automation & Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Air Force Medical Center,PLA, Beijing 100142, China.

出版信息

J Healthc Eng. 2021 Jan 11;2021:6674695. doi: 10.1155/2021/6674695. eCollection 2021.

Abstract

Automatic heartbeat classification via electrocardiogram (ECG) can help diagnose and prevent cardiovascular diseases in time. Many classification approaches have been proposed for heartbeat classification, based on feature extraction. However, the existing approaches face the challenges of high feature dimensions and slow recognition speeds. In this paper, we propose an efficient extreme learning machine (ELM) approach for heartbeat classification with multiple classes, based on the hybrid time-domain and wavelet time-frequency features. The proposed approach contains two sequential modules: (1) feature extraction of heartbeat signals, including RR interval features in the time-domain and wavelet time-frequency features, and (2) heartbeat classification using ELM based on the extracted features. RR interval features are calculated to reflect the dynamic characteristics of heartbeat signals. Discrete wavelet transform (DWT) is used to decompose the heartbeat signals and extract the time-frequency features of the heartbeat signals along the timeline. ELM is a single-hidden layer feedforward neural network with the hidden layer parameters randomly generated in advance and the output layer parameters calculated optimally using the least-square algorithm directly using the training samples. ELM is used as the heartbeat classification algorithm due to its high accuracy training accuracy, fast training speed, and good generalization ability. Experimental testing is carried out using the public MIT-BIH arrhythmia dataset to perform a 16-class classification. Experimental results show that the proposed approach achieves a superior classification accuracy with fast training and recognition speeds, compared with existing classification algorithms.

摘要

通过心电图(ECG)进行自动心跳分类可以帮助及时诊断和预防心血管疾病。许多分类方法已经被提出用于心跳分类,基于特征提取。然而,现有的方法面临特征维度高和识别速度慢的挑战。在本文中,我们提出了一种基于混合时域和小波时频特征的高效极限学习机(ELM)方法,用于多类别的心跳分类。该方法包含两个顺序模块:(1)心跳信号的特征提取,包括时域中的 RR 间隔特征和小波时频特征,(2)基于提取特征的 ELM 进行心跳分类。RR 间隔特征用于反映心跳信号的动态特性。离散小波变换(DWT)用于分解心跳信号,并沿着时间线提取心跳信号的时频特征。ELM 是一种具有随机生成的隐藏层参数和使用训练样本直接使用最小二乘算法计算得到的最优输出层参数的单隐藏层前馈神经网络。由于 ELM 具有高精度的训练准确性、快速的训练速度和良好的泛化能力,因此被用作心跳分类算法。使用公共的 MIT-BIH 心律失常数据集进行实验测试,以进行 16 类分类。实验结果表明,与现有分类算法相比,该方法具有更快的训练和识别速度,实现了更高的分类准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e03/7814950/3514ad0e4ab4/JHE2021-6674695.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验