Suppr超能文献

基因水平甲基化组全基因组关联分析鉴定阿尔茨海默病新基因。

A gene-level methylome-wide association analysis identifies novel Alzheimer's disease genes.

机构信息

Department of Statistics, Florida State University.

Department of Biostatistics & Data Science, University of Kansas Medical Center.

出版信息

Bioinformatics. 2021 Aug 4;37(14):1933–1940. doi: 10.1093/bioinformatics/btab045. Epub 2021 Feb 1.

Abstract

MOTIVATION

Transcriptome-wide association studies (TWAS) have successfully facilitated the discovery of novel genetic risk loci for many complex traits, including late-onset Alzheimer's disease (AD). However, most existing TWAS methods rely only on gene expression and ignore epigenetic modification (i.e., DNA methylation) and functional regulatory information (i.e., enhancer-promoter interactions), both of which contribute significantly to the genetic basis of AD.

RESULTS

We develop a novel gene-level association testing method that integrates genetically regulated DNA methylation and enhancer-target gene pairs with genome-wide association study (GWAS) summary results. Through simulations, we show that our approach, referred to as the CMO (cross methylome omnibus) test, yielded well controlled type I error rates and achieved much higher statistical power than competing methods under a wide range of scenarios. Furthermore, compared with TWAS, CMO identified an average of 124% more associations when analyzing several brain imaging-related GWAS results. By analyzing to date the largest AD GWAS of 71,880 cases and 383,378 controls, CMO identified six novel loci for AD, which have been ignored by competing methods.

AVAILABILITY

Software: https://github.com/ChongWuLab/CMO.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

全转录组关联研究 (TWAS) 成功地发现了许多复杂性状的新的遗传风险位点,包括迟发性阿尔茨海默病 (AD)。然而,大多数现有的 TWAS 方法仅依赖于基因表达,而忽略了表观遗传修饰(即 DNA 甲基化)和功能调节信息(即增强子-启动子相互作用),这两者都对 AD 的遗传基础有重要贡献。

结果

我们开发了一种新的基因水平关联测试方法,该方法将受遗传调控的 DNA 甲基化和增强子-靶基因对与全基因组关联研究 (GWAS) 汇总结果相结合。通过模拟,我们表明,我们的方法,称为 CMO(跨甲基组整体)测试,在广泛的情况下,产生了良好控制的 I 型错误率,并比竞争方法实现了更高的统计功效。此外,与 TWAS 相比,当分析几个与脑成像相关的 GWAS 结果时,CMO 平均识别出 124%更多的关联。通过分析迄今为止最大的 AD GWAS(71880 例病例和 383378 例对照),CMO 确定了 AD 的六个新的位点,这些位点被竞争方法忽略了。

可用性

软件:https://github.com/ChongWuLab/CMO。

补充信息

补充数据可在生物信息学在线获得。

相似文献

1
A gene-level methylome-wide association analysis identifies novel Alzheimer's disease genes.
Bioinformatics. 2021 Aug 4;37(14):1933–1940. doi: 10.1093/bioinformatics/btab045. Epub 2021 Feb 1.
3
Statistical power of transcriptome-wide association studies.
Genet Epidemiol. 2022 Dec;46(8):572-588. doi: 10.1002/gepi.22491. Epub 2022 Jun 29.
5
Hippocampal transcriptome-wide association study and neurobiological pathway analysis for Alzheimer's disease.
PLoS Genet. 2021 Feb 25;17(2):e1009363. doi: 10.1371/journal.pgen.1009363. eCollection 2021 Feb.
6
Novel Variance-Component TWAS method for studying complex human diseases with applications to Alzheimer's dementia.
PLoS Genet. 2021 Apr 2;17(4):e1009482. doi: 10.1371/journal.pgen.1009482. eCollection 2021 Apr.
7
A Bayesian framework for multiple trait colocalization from summary association statistics.
Bioinformatics. 2018 Aug 1;34(15):2538-2545. doi: 10.1093/bioinformatics/bty147.
9
InTACT: An adaptive and powerful framework for joint-tissue transcriptome-wide association studies.
Genet Epidemiol. 2021 Dec;45(8):848-859. doi: 10.1002/gepi.22425. Epub 2021 Jul 13.
10
Bayesian Genome-wide TWAS Method to Leverage both cis- and trans-eQTL Information through Summary Statistics.
Am J Hum Genet. 2020 Oct 1;107(4):714-726. doi: 10.1016/j.ajhg.2020.08.022. Epub 2020 Sep 21.

引用本文的文献

1
Methylome-wide association studies of psychiatric disorders.
EC Psychol Psychiatr. 2024;2024. Epub 2024 Aug 2.
2
Integrative Multi-Omics Approach for Improving Causal Gene Identification.
Genet Epidemiol. 2025 Jan;49(1):e22601. doi: 10.1002/gepi.22601. Epub 2024 Oct 23.
3
Employing Informatics Strategies in Alzheimer's Disease Research: A Review from Genetics, Multiomics, and Biomarkers to Clinical Outcomes.
Annu Rev Biomed Data Sci. 2024 Aug;7(1):391-418. doi: 10.1146/annurev-biodatasci-102423-121021. Epub 2024 Jul 24.
4
SUMMIT-FA: a new resource for improved transcriptome imputation using functional annotations.
Hum Mol Genet. 2024 Mar 20;33(7):624-635. doi: 10.1093/hmg/ddad205.
6
Integrating multi-omics summary data using a Mendelian randomization framework.
Brief Bioinform. 2022 Nov 19;23(6). doi: 10.1093/bib/bbac376.
7
An integrative multiomics analysis identifies putative causal genes for COVID-19 severity.
Genet Med. 2021 Nov;23(11):2076-2086. doi: 10.1038/s41436-021-01243-5. Epub 2021 Jun 28.

本文引用的文献

1
Cauchy combination test: a powerful test with analytic -value calculation under arbitrary dependency structures.
J Am Stat Assoc. 2020;115(529):393-402. doi: 10.1080/01621459.2018.1554485. Epub 2019 Apr 25.
4
A powerful fine-mapping method for transcriptome-wide association studies.
Hum Genet. 2020 Feb;139(2):199-213. doi: 10.1007/s00439-019-02098-2. Epub 2019 Dec 16.
6
Multi-tissue transcriptome analyses identify genetic mechanisms underlying neuropsychiatric traits.
Nat Genet. 2019 Jun;51(6):933-940. doi: 10.1038/s41588-019-0409-8. Epub 2019 May 13.
7
Long-range enhancer-promoter contacts in gene expression control.
Nat Rev Genet. 2019 Aug;20(8):437-455. doi: 10.1038/s41576-019-0128-0.
8
Diagnosis of Alzheimer's disease utilizing amyloid and tau as fluid biomarkers.
Exp Mol Med. 2019 May 9;51(5):1-10. doi: 10.1038/s12276-019-0250-2.
9
Probabilistic fine-mapping of transcriptome-wide association studies.
Nat Genet. 2019 Apr;51(4):675-682. doi: 10.1038/s41588-019-0367-1. Epub 2019 Mar 29.
10
Opportunities and challenges for transcriptome-wide association studies.
Nat Genet. 2019 Apr;51(4):592-599. doi: 10.1038/s41588-019-0385-z. Epub 2019 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验