Environmental Waste Recycle Institute (EWRI), Department of Energy Science and Technology (DEST), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Republic of Korea.
Division of Biological Sciences, College of Arts and Sciences, University of the Philippines Visayas, 5023, Miagao, Iloilo, Philippines.
Bioprocess Biosyst Eng. 2021 Jun;44(6):1081-1091. doi: 10.1007/s00449-020-02502-6. Epub 2021 Feb 1.
Microbial biorefinery is a promising route toward sustainable production of glycolic acid (GA), a valuable raw material for various industries. However, inherent microbial GA production has limited substrate consumption using either D-xylose or D-glucose as carbon catabolite repression (CCR) averts their co-utilization. To bypass CCR, a GA-producing strain using D-xylose via Dahms pathway was engineered to allow cellobiose uptake. Unlike glucose, cellobiose was assimilated and intracellularly degraded without repressing D-xylose uptake. The final GA-producing E. coli strain (CLGA8) has an overexpressed cellobiose phosphorylase (cep94A) from Saccharophagus degradans 2-40 and an activated glyoxylate shunt pathway. Expression of cep94A improved GA production reaching the maximum theoretical yield (0.51 g GA g xylose), whereas activation of glyoxylate shunt pathway enabled GA production from cellobiose, which further increased the GA titer (2.25 g GA L). To date, this is the highest reported GA yield from D-xylose through Dahms pathway in an engineered E. coli with cellobiose as co-substrate.
微生物生物精炼厂是一种有前途的可持续生产乙醇酸(GA)的途径,GA 是各种工业的有价值的原材料。然而,由于固有微生物 GA 生产受到碳分解代谢物抑制(CCR)的限制,无论是使用 D-木糖还是 D-葡萄糖作为碳源,都会阻止它们的共同利用。为了绕过 CCR,通过 Dahms 途径使用 D-木糖生产 GA 的生产菌株被工程改造为能够摄取纤维二糖。与葡萄糖不同,纤维二糖被同化并在细胞内降解,而不会抑制 D-木糖的摄取。最终的 GA 生产大肠杆菌菌株(CLGA8)过表达了来自 Saccharophagus degradans 2-40 的纤维二糖磷酸酶(cep94A),并激活了乙醛酸支路途径。cep94A 的表达提高了 GA 的产量,达到了最大理论产率(0.51 g GA g 木糖),而乙醛酸支路途径的激活使得能够从纤维二糖生产 GA,进一步提高了 GA 的浓度(2.25 g GA L)。迄今为止,这是在具有纤维二糖作为共底物的工程大肠杆菌中通过 Dahms 途径从 D-木糖获得的最高报道的 GA 产率。