Suppr超能文献

通过代谢工程化的大肠杆菌利用木糖和纤维二糖提高乙醇酸产量。

Enhanced glycolic acid yield through xylose and cellobiose utilization by metabolically engineered Escherichia coli.

机构信息

Environmental Waste Recycle Institute (EWRI), Department of Energy Science and Technology (DEST), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Republic of Korea.

Division of Biological Sciences, College of Arts and Sciences, University of the Philippines Visayas, 5023, Miagao, Iloilo, Philippines.

出版信息

Bioprocess Biosyst Eng. 2021 Jun;44(6):1081-1091. doi: 10.1007/s00449-020-02502-6. Epub 2021 Feb 1.

Abstract

Microbial biorefinery is a promising route toward sustainable production of glycolic acid (GA), a valuable raw material for various industries. However, inherent microbial GA production has limited substrate consumption using either D-xylose or D-glucose as carbon catabolite repression (CCR) averts their co-utilization. To bypass CCR, a GA-producing strain using D-xylose via Dahms pathway was engineered to allow cellobiose uptake. Unlike glucose, cellobiose was assimilated and intracellularly degraded without repressing D-xylose uptake. The final GA-producing E. coli strain (CLGA8) has an overexpressed cellobiose phosphorylase (cep94A) from Saccharophagus degradans 2-40 and an activated glyoxylate shunt pathway. Expression of cep94A improved GA production reaching the maximum theoretical yield (0.51 g GA g xylose), whereas activation of glyoxylate shunt pathway enabled GA production from cellobiose, which further increased the GA titer (2.25 g GA L). To date, this is the highest reported GA yield from D-xylose through Dahms pathway in an engineered E. coli with cellobiose as co-substrate.

摘要

微生物生物精炼厂是一种有前途的可持续生产乙醇酸(GA)的途径,GA 是各种工业的有价值的原材料。然而,由于固有微生物 GA 生产受到碳分解代谢物抑制(CCR)的限制,无论是使用 D-木糖还是 D-葡萄糖作为碳源,都会阻止它们的共同利用。为了绕过 CCR,通过 Dahms 途径使用 D-木糖生产 GA 的生产菌株被工程改造为能够摄取纤维二糖。与葡萄糖不同,纤维二糖被同化并在细胞内降解,而不会抑制 D-木糖的摄取。最终的 GA 生产大肠杆菌菌株(CLGA8)过表达了来自 Saccharophagus degradans 2-40 的纤维二糖磷酸酶(cep94A),并激活了乙醛酸支路途径。cep94A 的表达提高了 GA 的产量,达到了最大理论产率(0.51 g GA g 木糖),而乙醛酸支路途径的激活使得能够从纤维二糖生产 GA,进一步提高了 GA 的浓度(2.25 g GA L)。迄今为止,这是在具有纤维二糖作为共底物的工程大肠杆菌中通过 Dahms 途径从 D-木糖获得的最高报道的 GA 产率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验