College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
Department of Chemistry and Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States.
Environ Sci Technol. 2021 Feb 16;55(4):2628-2638. doi: 10.1021/acs.est.0c07319. Epub 2021 Feb 2.
Groundwater contamination by halogenated organic compounds, especially fluorinated ones, threatens freshwater sources globally. Sulfidized nanoscale zero-valent iron (SNZVI), which is demonstrably effective for dechlorination of groundwater contaminants, has not been well explored for defluorination. Here, we show that SNZVI nanoparticles synthesized via a modified post-sulfidation method provide rapid dechlorination (∼1100 μmol m day) and relatively fast defluorination (∼6 μmol m day) of a halogenated emerging contaminant (florfenicol) under ambient conditions, the fastest rates that have ever been reported for Fe-based technologies. Batch reactivity experiments, material characterizations, and theoretical calculations indicate that coating S onto the metallic Fe surface provides a highly chemically reactive surface and changes the primary dechlorination pathway from atomic H for nanoscale zero-valent iron (NZVI) to electron transfer for SNZVI. S and Fe sites are responsible for the direct electron transfer and atomic H-mediated reaction, respectively, and β-elimination is the primary defluorination pathway. Notably, the Cl atoms in florfenicol make the surface more chemically reactive for defluorination, either by increasing florfenicol adsorption or by electronic effects. The defluorination rate by SNZVI is ∼132-222 times higher with chlorine attached compared to the absence of chlorine in the molecule. These mechanistic insights could lead to new SNZVI materials for in situ groundwater remediation of fluorinated contaminants.
地下水受到卤代有机化合物(尤其是含氟化合物)的污染,这一问题在全球范围内对淡水资源构成了威胁。硫化纳米零价铁(SNZVI)已被证实可有效去除地下水中的氯化物污染物,但对于脱氟的研究却相对较少。本研究表明,通过改良的后硫化法合成的 SNZVI 纳米颗粒在环境条件下可快速实现卤代新兴污染物(氟苯尼考)的脱氯(1100 μmol m day)和相对快速的脱氟(6 μmol m day),这是迄今为止报道的基于 Fe 的技术中最快的速率。批反应实验、材料特性和理论计算表明,S 覆盖在金属 Fe 表面上提供了一个高反应性的表面,并改变了纳米零价铁(NZVI)的原子 H 作为主要脱氯途径,转变为 SNZVI 的电子转移。S 和 Fe 位分别负责直接电子转移和原子 H 介导的反应,β-消除是主要的脱氟途径。值得注意的是,氟苯尼考中的 Cl 原子通过增加氟苯尼考的吸附或通过电子效应使表面对脱氟更具反应性。与分子中不存在氯原子相比,SNZVI 对含氯的氟苯尼考的脱氟速率提高了约 132-222 倍。这些机制见解可以为含氟污染物的地下水原位修复提供新型 SNZVI 材料。