Suppr超能文献

用于模拟血流诱导血小板激活的预测性多尺度模型:将计算结果与体外结果相关联。

A predictive multiscale model for simulating flow-induced platelet activation: Correlating in silico results with in vitro results.

机构信息

Department of Biomedical Engineering, Stony Brook University, NY 11794, United States; Department of Applied Mathematics and Statistics, Stony Brook University, NY 11794, United States.

Department of Biomedical Engineering, Stony Brook University, NY 11794, United States.

出版信息

J Biomech. 2021 Mar 5;117:110275. doi: 10.1016/j.jbiomech.2021.110275. Epub 2021 Jan 25.

Abstract

Flow-induced platelet activation prompts complex filopodial formation. Continuum methods fail to capture such molecular-scale mechanisms. A multiscale numerical model was developed to simulate this activation process, where a Dissipative Particle Dynamics (DPD) model of viscous blood flow is interfaced with a Coarse Grained Molecular Dynamics (CGMD) platelet model. Embedded in DPD blood flow, the macroscopic dynamic stresses are interactively transferred to the CGMD model, inducing intra-platelet associated events. The platelets activate by a biomechanical transductive linkage chain and dynamically change their shape in response. The models are fully coupled via a hybrid-potential interface and multiple time-stepping (MTS) schemes for handling the disparity between the spatiotemporal scales. Cumulative hemodynamic stresses that may lead to platelet activation are mapped on the surface membrane and simultaneously transmitted to the cytoplasm and cytoskeleton. Upon activation, the flowing platelets lose their quiescent discoid shape and evolve by forming filopodia. The model predictions were validated by a set of in vitro experiments, Platelets were exposed to various combinations of shear stresses and durations in our programmable hemodynamic shearing device (HSD). Their shape change was measured at multiple time points using scanning electron microscopy (SEM). The CGMD model parameters were fine-tuned by interrogating a parameter space established in these experiments. Segmentation of the SEM imaging streams was conducted by a deep machine learning system. This model can be further employed to simulate shear mediated platelet activation thrombosis initiation and to study the effects of modulating platelet properties to enhance their shear resistance via mechanotransduction pathways.

摘要

血流诱导血小板活化促使复杂的丝状伪足形成。连续介质方法无法捕捉到这种分子尺度的机制。开发了一种多尺度数值模型来模拟这个激活过程,其中粘性血流的耗散粒子动力学(DPD)模型与粗粒分子动力学(CGMD)血小板模型相连接。在 DPD 血流中,宏观动态应力被交互式地传递到 CGMD 模型,引发血小板内相关事件。血小板通过生物力学转导链接链激活,并动态改变其形状以响应。模型通过混合势接口和多个时间步长(MTS)方案完全耦合,以处理时空尺度之间的差异。可能导致血小板激活的累积血液动力学应力被映射到表面膜上,并同时传递到细胞质和细胞骨架。在激活后,流动的血小板失去其静止的盘状形状,并通过形成丝状伪足而演变。通过一组体外实验验证了模型预测,血小板在我们可编程的血液动力学剪切装置(HSD)中暴露于不同的剪切应力和持续时间组合下。使用扫描电子显微镜(SEM)在多个时间点测量它们的形状变化。通过在这些实验中建立的参数空间来调整 CGMD 模型参数。通过深度学习系统对 SEM 成像流进行分割。该模型可进一步用于模拟剪切介导的血小板激活、血栓形成的起始,以及研究通过力学转导途径调节血小板特性以增强其抗剪切能力的效果。

相似文献

5
A multiscale model for multiple platelet aggregation in shear flow.用于剪切流中多个血小板聚集的多尺度模型。
Biomech Model Mechanobiol. 2021 Jun;20(3):1013-1030. doi: 10.1007/s10237-021-01428-6. Epub 2021 Mar 29.

引用本文的文献

本文引用的文献

4
Roll, adhere, spread and contract: structural mechanics of platelet function.滚动、黏附、铺展与收缩:血小板功能的结构力学
Eur J Cell Biol. 2015 Mar-Apr;94(3-4):129-38. doi: 10.1016/j.ejcb.2015.01.001. Epub 2015 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验