Suppr超能文献

使用迁移学习构建用于四维锥束计算机断层扫描增强的患者特异性模型。

Building a patient-specific model using transfer learning for four-dimensional cone beam computed tomography augmentation.

作者信息

Sun Leshan, Jiang Zhuoran, Chang Yushi, Ren Lei

机构信息

Department of Radiation Oncology, Duke University Medical Center (DUMC), Durham, North Carolina, USA.

Medical Physics Graduate Program, Duke Kunshan University, Kunshan, China.

出版信息

Quant Imaging Med Surg. 2021 Feb;11(2):540-555. doi: 10.21037/qims-20-655.

Abstract

BACKGROUND

We previously developed a deep learning model to augment the quality of four-dimensional (4D) cone-beam computed tomography (CBCT). However, the model was trained using group data, and thus was not optimized for individual patients. Consequently, the augmented images could not depict small anatomical structures, such as lung vessels.

METHODS

In the present study, the transfer learning method was used to further improve the performance of the deep learning model for individual patients. Specifically, a U-Net-based model was first trained to augment 4D-CBCT using group data. Next, transfer learning was used to fine tune the model based on a specific patient's available data to improve its performance for that individual patient. Two types of transfer learning were studied: layer-freezing and whole-network fine-tuning. The performance of the transfer learning model was evaluated by comparing the augmented CBCT images with the ground truth images both qualitatively and quantitatively using a structure similarity index matrix (SSIM) and peak signal-to-noise ratio (PSNR). The results were also compared to those obtained using only the U-Net method.

RESULTS

Qualitatively, the patient-specific model recovered more detailed information of the lung area than the group-based U-Net model. Quantitatively, the SSIM improved from 0.924 to 0.958, and the PSNR improved from 33.77 to 38.42 for the whole volumetric images for the group-based U-Net and patient-specific models, respectively. The layer-freezing method was found to be more efficient than the whole-network fine-tuning method, and had a training time as short as 10 minutes. The effect of augmentation by transfer learning increased as the number of projections used for CBCT reconstruction decreased.

CONCLUSIONS

Overall, the patient-specific model optimized by transfer learning was efficient and effective at improving image qualities of augmented undersampled three-dimensional (3D)- and 4D-CBCT images, and could be extremely valuable for applications in image-guided radiation therapy.

摘要

背景

我们之前开发了一种深度学习模型来提高四维(4D)锥形束计算机断层扫描(CBCT)的质量。然而,该模型是使用分组数据进行训练的,因此并未针对个体患者进行优化。因此,增强后的图像无法描绘诸如肺血管等小的解剖结构。

方法

在本研究中,使用迁移学习方法进一步提高深度学习模型对个体患者的性能。具体而言,首先训练基于U-Net的模型使用分组数据增强4D-CBCT。接下来,使用迁移学习基于特定患者的可用数据对模型进行微调,以提高其对该个体患者的性能。研究了两种类型的迁移学习:层冻结和全网络微调。通过使用结构相似性指数矩阵(SSIM)和峰值信噪比(PSNR)对增强后的CBCT图像与真实图像进行定性和定量比较,评估迁移学习模型的性能。结果还与仅使用U-Net方法获得的结果进行了比较。

结果

定性地说,特定患者模型比基于分组的U-Net模型恢复了更多肺区域的详细信息。定量地说,基于分组的U-Net模型和特定患者模型的全容积图像的SSIM分别从0.924提高到0.958,PSNR从33.77提高到38.42。发现层冻结方法比全网络微调方法更有效,并且训练时间短至10分钟。随着用于CBCT重建的投影数量减少,迁移学习增强的效果增加。

结论

总体而言,通过迁移学习优化后的特定患者模型在提高欠采样三维(3D)和4D-CBCT图像增强后的图像质量方面是高效且有效的,并且在图像引导放射治疗中的应用可能极具价值。

相似文献

2

引用本文的文献

本文引用的文献

1
2
Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network.采用残差编解码器卷积神经网络的低剂量CT
IEEE Trans Med Imaging. 2017 Dec;36(12):2524-2535. doi: 10.1109/TMI.2017.2715284. Epub 2017 Jun 13.
5
Deep learning in bioinformatics.生物信息学中的深度学习。
Brief Bioinform. 2017 Sep 1;18(5):851-869. doi: 10.1093/bib/bbw068.
6
Image Super-Resolution Using Deep Convolutional Networks.基于深度卷积网络的图像超分辨率重建。
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.
7
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验