Imiołek Mateusz, Isenegger Patrick G, Ng Wai-Lung, Khan Aziz, Gouverneur Véronique, Davis Benjamin G
Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom of Great Britain and Northern Ireland.
The Rosalind Franklin Institute, Oxfordshire OX11 0FA, United Kingdom of Great Britain and Northern Ireland.
ACS Cent Sci. 2021 Jan 27;7(1):145-155. doi: 10.1021/acscentsci.0c01193. Epub 2021 Jan 13.
The carbonyl group is now a widely useful, nonproteinogenic functional group in chemical biology, yet methods for its generation in proteins have relied upon either cotranslational incorporation of unnatural amino acids bearing carbonyls or oxidative conversion (chemical or enzymatic) of existing natural amino acids. If available, alternative strategies for directly adding the C=O group through C-C bond-forming C-carbonylation, particularly at currently inaccessible amino acid sites, would provide a powerful method for adding valuable reactivity and expanding possible function in proteins. Here, following a survey of methods for HCF· generation, we show that reductive photoredox catalysis enables mild radical-mediated difluoromethylation-hydrolysis of native protein residues as an effective method for carbonylation. Inherent selectivity of HCF· allowed preferential modification of Trp residues. The resulting C-2-difluoromethylated Trp undergoes Reimer-Tiemann-type dehalogenation providing highly effective spontaneous hydrolytic collapse in proteins to carbonylated HC(O)-Trp (-formyl-Trp = CfW) residues. This new, unnatural protein residue CfW not only was found to be effective in bioconjugation, ligation, and labeling reactions but also displayed strong "red-shifting" of its absorption and fluorescent emission maxima, allowing direct use of Trp sites as UV-visualized fluorophores in proteins and even cells. In this way, this method for the effective generation of masked formyl-radical "HC(O)·" equivalents enables first examples of C-C bond-forming carbonylation in proteins, thereby expanding the chemical reactivity and spectroscopic function that may be selectively and post-translationally "edited" into biology.
羰基如今在化学生物学中是一种广泛应用的非蛋白质原性官能团,然而在蛋白质中生成羰基的方法要么依赖于共翻译掺入带有羰基的非天然氨基酸,要么依赖于对现有天然氨基酸进行氧化转化(化学或酶促)。如果可行的话,通过形成C-C键的C-羰基化直接添加C=O基团的替代策略,特别是在目前难以实现的氨基酸位点,将为在蛋白质中添加有价值的反应活性和扩展可能的功能提供一种强大的方法。在这里,在对生成HCF·的方法进行调研之后,我们表明还原性光氧化还原催化能够实现天然蛋白质残基的温和自由基介导的二氟甲基化-水解,作为一种有效的羰基化方法。HCF·的固有选择性使得色氨酸残基能够被优先修饰。生成的C-2-二氟甲基化色氨酸会发生瑞默-蒂曼型脱卤反应,在蛋白质中高效自发水解降解为羰基化的HC(O)-Trp(-甲酰基色氨酸 = CfW)残基。这种新的非天然蛋白质残基CfW不仅在生物共轭、连接和标记反应中有效,而且其吸收和荧光发射最大值还表现出强烈的“红移”,使得色氨酸位点能够直接用作蛋白质甚至细胞中通过紫外线可视化的荧光团。通过这种方式,这种有效生成掩蔽甲酰基自由基“HC(O)·”等价物的方法实现了蛋白质中形成C-C键的羰基化的首个实例,从而扩展了可以选择性地和翻译后“编辑”到生物学中的化学反应活性和光谱功能。