Aryana Kiumars, Gaskins John T, Nag Joyeeta, Stewart Derek A, Bai Zhaoqiang, Mukhopadhyay Saikat, Read John C, Olson David H, Hoglund Eric R, Howe James M, Giri Ashutosh, Grobis Michael K, Hopkins Patrick E
Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
Western Digital Corporation, San Jose, CA, 95119, USA.
Nat Commun. 2021 Feb 3;12(1):774. doi: 10.1038/s41467-020-20661-8.
Phase change memory (PCM) is a rapidly growing technology that not only offers advancements in storage-class memories but also enables in-memory data processing to overcome the von Neumann bottleneck. In PCMs, data storage is driven by thermal excitation. However, there is limited research regarding PCM thermal properties at length scales close to the memory cell dimensions. Our work presents a new paradigm to manage thermal transport in memory cells by manipulating the interfacial thermal resistance between the phase change unit and the electrodes without incorporating additional insulating layers. Experimental measurements show a substantial change in interfacial thermal resistance as GST transitions from cubic to hexagonal crystal structure, resulting in a factor of 4 reduction in the effective thermal conductivity. Simulations reveal that interfacial resistance between PCM and its adjacent layer can reduce the reset current for 20 and 120 nm diameter devices by up to ~ 40% and ~ 50%, respectively. These thermal insights present a new opportunity to reduce power and operating currents in PCMs.
相变存储器(PCM)是一种快速发展的技术,它不仅在存储级存储器方面取得了进展,还能实现内存数据处理以克服冯·诺依曼瓶颈。在PCM中,数据存储由热激发驱动。然而,在接近存储单元尺寸的长度尺度上,关于PCM热特性的研究有限。我们的工作提出了一种新的范例,即通过操纵相变单元与电极之间的界面热阻来管理存储单元中的热传输,而无需引入额外的绝缘层。实验测量表明,随着 GST 从立方晶体结构转变为六方晶体结构,界面热阻发生了显著变化,导致有效热导率降低了4倍。模拟结果显示,PCM与其相邻层之间的界面电阻可使直径为20纳米和120纳米的器件的复位电流分别降低多达约40%和约50%。这些热学见解为降低PCM中的功耗和工作电流提供了新的机会。