Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-RoNam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-RoNam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-RoNam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
Metab Eng. 2021 Mar;64:146-153. doi: 10.1016/j.ymben.2021.02.001. Epub 2021 Feb 8.
Carbon monoxide (CO) is a promising carbon source for producing value-added biochemicals via microbial fermentation. However, its microbial conversion has been challenging because of difficulties in genetic engineering of CO-utilizing microorganisms and, more importantly, maintaining CO consumption which is negatively affected by the toxicity of CO and accumulated byproducts. To overcome these issues, we devised mutualistic microbial consortia, co-culturing Eubacterium limosum and genetically engineered Escherichia coli for the production of 3-hydroxypropionic acid (3-HP) and itaconic acid (ITA). During the co-culture, E. limosum assimilated CO and produced acetate, a toxic by-product, while E. coli utilized acetate as a sole carbon source. We found that this mutualistic interaction dramatically stabilized and improved CO consumption of E. limosum compared to monoculture. Consequently, the improved CO consumption allowed successful production of 3-HP and ITA from CO. This study is the first demonstration of value-added biochemical production from CO using a microbial consortium. Moreover, it suggests that synthetic mutualistic microbial consortium can serve as a powerful platform for the valorization of CO.
一氧化碳(CO)是一种很有前途的碳源,可以通过微生物发酵来生产高附加值的生化产品。然而,由于 CO 利用微生物的遗传工程改造困难,以及更重要的是,由于 CO 的毒性和积累的副产物会抑制 CO 的消耗,因此其微生物转化一直具有挑战性。为了克服这些问题,我们设计了共生微生物群落,共同培养迟缓埃格特菌和基因工程改造的大肠杆菌,以生产 3-羟基丙酸(3-HP)和衣康酸(ITA)。在共培养过程中,迟缓埃格特菌同化 CO 并产生乙酸,这是一种有毒的副产物,而大肠杆菌则将乙酸用作唯一的碳源。我们发现,与单培养相比,这种共生相互作用显著稳定并提高了迟缓埃格特菌对 CO 的消耗。因此,改进的 CO 消耗使得从 CO 成功生产出 3-HP 和 ITA。本研究首次证明了使用微生物群落从 CO 生产高附加值的生化产品。此外,它表明合成共生微生物群落可以作为 CO 增值的有力平台。