Suppr超能文献

从三维距离图和二维彩色图像中进行三维目标检测和实例分割。

3D Object Detection and Instance Segmentation from 3D Range and 2D Color Images.

机构信息

The Graduate Center, Computer Science Department, City University of New York, New York, NY 10016, USA.

Hunter College & The Graduate Center, Computer Science Department, City University of New York, New York, NY 10065, USA.

出版信息

Sensors (Basel). 2021 Feb 9;21(4):1213. doi: 10.3390/s21041213.

Abstract

Instance segmentation and object detection are significant problems in the fields of computer vision and robotics. We address those problems by proposing a novel object segmentation and detection system. First, we detect 2D objects based on RGB, depth only, or RGB-D images. A 3D convolutional-based system, named Frustum VoxNet, is proposed. This system generates frustums from 2D detection results, proposes 3D candidate voxelized images for each frustum, and uses a 3D convolutional neural network (CNN) based on these candidates voxelized images to perform the 3D instance segmentation and object detection. Results on the SUN RGB-D dataset show that our RGB-D-based system's 3D inference is much faster than state-of-the-art methods, without a significant loss of accuracy. At the same time, we can provide segmentation and detection results using depth only images, with accuracy comparable to RGB-D-based systems. This is important since our methods can also work well in low lighting conditions, or with sensors that do not acquire RGB images. Finally, the use of segmentation as part of our pipeline increases detection accuracy, while providing at the same time 3D instance segmentation.

摘要

实例分割和目标检测是计算机视觉和机器人领域的重要问题。我们通过提出一种新的目标分割和检测系统来解决这些问题。首先,我们基于 RGB、仅深度或 RGB-D 图像检测 2D 目标。我们提出了一个基于 3D 卷积的系统,名为 Frustum VoxNet。该系统从 2D 检测结果生成视锥,为每个视锥提议 3D 候选体素化图像,并使用基于这些候选体素化图像的 3D 卷积神经网络 (CNN) 进行 3D 实例分割和目标检测。在 SUN RGB-D 数据集上的结果表明,我们的基于 RGB-D 的系统的 3D 推断速度比最先进的方法快得多,而精度损失不大。同时,我们可以仅使用深度图像提供分割和检测结果,其准确性可与基于 RGB-D 的系统相媲美。这很重要,因为我们的方法在光照条件较差或传感器不采集 RGB 图像的情况下也能很好地工作。最后,分割作为我们管道的一部分的使用提高了检测精度,同时提供了 3D 实例分割。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec3d/7916118/cad6cfe7da0b/sensors-21-01213-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验