Suppr超能文献

结合特征工程和机器学习来预测……中的必需基因。 (原文句末不完整)

Combined use of feature engineering and machine-learning to predict essential genes in .

作者信息

Campos Tulio L, Korhonen Pasi K, Hofmann Andreas, Gasser Robin B, Young Neil D

机构信息

Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.

出版信息

NAR Genom Bioinform. 2020 Jul 22;2(3):lqaa051. doi: 10.1093/nargab/lqaa051. eCollection 2020 Sep.

Abstract

Characterizing genes that are critical for the survival of an organism (i.e. essential) is important to gain a deep understanding of the fundamental cellular and molecular mechanisms that sustain life. Functional genomic investigations of the vinegar fly, , have unravelled the functions of numerous genes of this model species, but results from phenomic experiments can sometimes be ambiguous. Moreover, the features underlying gene essentiality are poorly understood, posing challenges for computational prediction. Here, we harnessed comprehensive genomic-phenomic datasets publicly available for and a machine-learning-based workflow to predict essential genes of this fly. We discovered strong predictors of such genes, paving the way for computational predictions of essentiality in less-studied arthropod pests and vectors of infectious diseases.

摘要

鉴定对生物体生存至关重要的基因(即必需基因)对于深入理解维持生命的基本细胞和分子机制非常重要。对果蝇进行的功能基因组学研究已经揭示了这个模式物种众多基因的功能,但表型实验的结果有时可能含糊不清。此外,基因必需性背后的特征了解甚少,这给计算预测带来了挑战。在这里,我们利用了公开可用的果蝇综合基因组-表型数据集以及基于机器学习的工作流程来预测果蝇的必需基因。我们发现了这类基因的强大预测因子,为在研究较少的节肢动物害虫和传染病媒介中进行必需性的计算预测铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29b7/7671374/cff80532fbcd/lqaa051fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验