Suppr超能文献

纳米颗粒引发的蛋白质超结构内的氧化还原循环:纳米金颗粒、分子还原剂和细胞色素之间的电子转移。

Redox Cycling within Nanoparticle-Nucleated Protein Superstructures: Electron Transfer between Nanoparticulate Gold, Molecular Reductant, and Cytochrome .

机构信息

Department of Chemistry and Biochemistry, Fairfield University, 1073 North Benson Road, Fairfield, Connecticut 06824, United States.

Nova Research, Inc., 1900 Elkin Street, Alexandria, Virginia 22308, United States.

出版信息

J Phys Chem B. 2021 Feb 25;125(7):1735-1745. doi: 10.1021/acs.jpcb.0c09688. Epub 2021 Feb 12.

Abstract

We previously described how thousands of the heme protein cytochrome (cyt.) self-organize into multilayered, roughly spherical superstructures as initiated by nucleation around one colloidal gold or silver nanoparticle. Within these superstructures, the protein is stabilized to unfolding in buffered media and survives superstructure encapsulation within silica gels and processing to form bioaerogels. We now report that Au∼cyt. superstructures in buffered media are not simply static groupings of proteins, but that the Au core and protein corona exhibit dynamic electron-transfer reactions within the superstructure as verified by UV-visible and resonance Raman spectroscopy. Within the superstructure, hundreds to thousands of ferricytochrome (Fe-cyt.) are reduced to ferrocytochrome (Fe-cyt.) following first-order kinetics with an average apparent forward rate constant of 1.9 ±0.4 × 10 s. The reducing power in the microheterogeneous medium is derived from two multielectron reductants: tannic acid used to stabilize the commercial gold sol and the Au nanoparticle at the center of the protein superstructure. Fluorescence monitoring of guanidinium chloride-induced unfolding reveals that superstructure-associated cyt. is stabilized to unfolding before and after chemical reduction of Fe-cyt. to form Fe-cyt., indicating that the superstructures remain intact during microheterogeneous redox reactions. Smaller nucleating Au nanoparticles or lower ionic strength in the buffered medium yields a greater extent of cyt. reduction. Partial oxidation of the cyt.-associated nanoparticulate Au is verified by X-ray photoelectron spectroscopy. The Au nanoparticle at the heart of the superstructure functions as a direct electron donor to the heme with oxidized Au atoms being recycled back to Au(0) as long as residual tannic acid, derived from the Au sol mother liquor, is present in the aqueous microheterogeneous medium.

摘要

我们之前描述了数千个血红素蛋白细胞色素 (cyt.) 如何在胶体金或银纳米粒子周围成核的作用下自组装成多层、大致球形的超结构。在这些超结构中,蛋白质在缓冲介质中稳定,不会展开,并在二氧化硅凝胶中封装并加工形成生物气凝胶后仍然存活。我们现在报告,在缓冲介质中,Au∼cyt. 超结构不仅仅是蛋白质的简单静态聚集,而且 Au 核和蛋白质外壳在超结构内表现出动态电子转移反应,这已通过紫外-可见和共振拉曼光谱得到验证。在超结构内,数百到数千个高铁细胞色素 (Fe-cyt.) 以一级动力学被还原为亚铁细胞色素 (Fe-cyt.),平均表观正向速率常数为 1.9 ±0.4 × 10 s。微不均匀介质中的还原能力来自两种多电子还原剂:单宁酸,用于稳定商业金溶胶和蛋白质超结构中心的 Au 纳米粒子。胍盐酸盐诱导展开的荧光监测表明,在 Fe-cyt. 化学还原形成 Fe-cyt. 之前和之后,与超结构相关的 cyt. 被稳定到展开,表明超结构在微不均匀氧化还原反应中保持完整。较小的成核 Au 纳米粒子或缓冲介质中的较低离子强度导致 cyt. 还原程度更大。通过 X 射线光电子能谱验证了与 cyt. 相关的纳米粒子 Au 的部分氧化。超结构中心的 Au 纳米粒子作为血红素的直接电子供体,只要存在来自 Au 溶胶母液的残留单宁酸,氧化的 Au 原子就会被回收回 Au(0)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验