Rao Mv Achuth, Yamini B K, Ketan J, Preetie Shetty A, Pal Pramod Kumar, Shivashankar N, Ghosh Prasanta Kumar
Electrical Engineering, Indian Institute of science (IISc), Bangalore, 560012, India.
Department of Speech Pathology and Audiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.
J Voice. 2023 May;37(3):314-321. doi: 10.1016/j.jvoice.2021.01.009. Epub 2021 Feb 10.
Essential voice tremor (EVT) is a voice disorder resulting from dyscoordination within the laryngeal musculature. A low-frequency fluctuations of fundamental voice frequency or the strength of excitation amplitude is the main consequence of the disorder. The automatic classification of healthy control and EVT is useful tool for the clinicians. A typical automatic EVT classification involves three steps. The first step is to compute the pitch contour from the speech. The second step is to compute the features from the pitch contour, and the final step is to use a classifier to classify the features into healthy or EVT. It is shown that a high-resolution pitch contour estimated from the glottal closure instants (GCIs) is useful for EVT classification. The HPRC estimation can be very poor in the presence of noise. Hence, a probabilistic source filter model based noise robust GCI detection is used for HPRC estimation. The Empirical mode decomposition based feature extraction is used followed by a support vector machine classifier. The EVT classification performance is evaluated using recordings from 45 subjects. The proposed method is found to perform better than the baseline techniques in eight different additive noise conditions with six SNR levels.
原发性声音震颤(EVT)是一种由喉部肌肉组织协调障碍引起的声音障碍。基本语音频率的低频波动或激励幅度的强度是该障碍的主要后果。健康对照和EVT的自动分类对临床医生来说是一种有用的工具。典型的EVT自动分类包括三个步骤。第一步是从语音中计算基频轮廓。第二步是从基频轮廓中计算特征,最后一步是使用分类器将特征分类为健康或EVT。结果表明,从声门闭合瞬间(GCI)估计的高分辨率基频轮廓对EVT分类很有用。在存在噪声的情况下,HPRC估计可能非常差。因此,基于概率源滤波器模型的抗噪声GCI检测用于HPRC估计。接着使用基于经验模式分解的特征提取,然后是支持向量机分类器。使用来自45名受试者的录音评估EVT分类性能。结果发现,在具有六个信噪比水平的八种不同加性噪声条件下,所提出的方法比基线技术表现更好。