Suppr超能文献

用于成像生理过氧亚硝酸盐的高性能基因编码荧光生物传感器。

A high-performance genetically encoded fluorescent biosensor for imaging physiological peroxynitrite.

机构信息

Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA.

Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA; Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA; Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.

出版信息

Cell Chem Biol. 2021 Nov 18;28(11):1542-1553.e5. doi: 10.1016/j.chembiol.2021.01.013. Epub 2021 Feb 12.

Abstract

Peroxynitrite is a reactive nitrogen species (RNS) that plays critical roles in signal transduction, stress response, and numerous human diseases. Advanced molecular tools that permit the selective, sensitive, and noninvasive detection of peroxynitrite are essential for understanding its pathophysiological functions. Here, we present pnGFP-Ultra, a high-performance, reaction-based, genetically encodable biosensor for imaging peroxynitrite in live cells. pnGFP-Ultra features a p-boronophenylalanine-modified chromophore as the sensing moiety and exhibits a remarkable ~110-fold fluorescence turn-on response toward peroxynitrite while displaying virtually no cross-reaction with other reactive oxygen/nitrogen species. To facilitate the expression of pnGFP-Ultra in mammalian cells, we engineered an efficient noncanonical amino acid (ncAA) expression system that is broadly applicable to the mammalian expression of ncAA-containing proteins. pnGFP-Ultra robustly detected peroxynitrite production in activated macrophages and primary glial cells. pnGFP-Ultra fills an important technical gap and represents a valuable addition to the molecular toolbox for probing RNS biology.

摘要

过氧亚硝酸盐是一种活性氮物种 (RNS),在信号转导、应激反应和许多人类疾病中发挥关键作用。允许选择性、敏感性和非侵入性检测过氧亚硝酸盐的先进分子工具对于理解其病理生理功能至关重要。在这里,我们提出了 pnGFP-Ultra,这是一种基于反应的、遗传可编码的高性能生物传感器,用于在活细胞中成像过氧亚硝酸盐。pnGFP-Ultra 的传感部分采用硼代苯丙氨酸修饰的生色团,对过氧亚硝酸盐表现出显著的约 110 倍的荧光开启响应,而与其他活性氧/氮物种几乎没有交叉反应。为了促进 pnGFP-Ultra 在哺乳动物细胞中的表达,我们设计了一种高效的非天然氨基酸 (ncAA) 表达系统,该系统广泛适用于含有 ncAA 的蛋白质在哺乳动物中的表达。pnGFP-Ultra 可在激活的巨噬细胞和原代神经胶质细胞中灵敏地检测到过氧亚硝酸盐的产生。pnGFP-Ultra 填补了一个重要的技术空白,是探测 RNS 生物学的分子工具包的一个有价值的补充。

相似文献

1
A high-performance genetically encoded fluorescent biosensor for imaging physiological peroxynitrite.
Cell Chem Biol. 2021 Nov 18;28(11):1542-1553.e5. doi: 10.1016/j.chembiol.2021.01.013. Epub 2021 Feb 12.
2
Development, Characterization, and Structural Analysis of a Genetically Encoded Red Fluorescent Peroxynitrite Biosensor.
ACS Chem Biol. 2023 Jun 16;18(6):1388-1397. doi: 10.1021/acschembio.3c00139. Epub 2023 May 15.
3
Genetically encoded fluorescent probe for the selective detection of peroxynitrite.
J Am Chem Soc. 2013 Oct 9;135(40):14940-3. doi: 10.1021/ja408011q. Epub 2013 Sep 26.
5
In vitro and in vivo imaging of peroxynitrite by a ratiometric boronate-based fluorescent probe.
Biosens Bioelectron. 2017 May 15;91:849-856. doi: 10.1016/j.bios.2017.01.027. Epub 2017 Jan 23.
6
Genetically encoding thyronine for fluorescent detection of peroxynitrite.
Bioorg Med Chem. 2020 Sep 15;28(18):115665. doi: 10.1016/j.bmc.2020.115665. Epub 2020 Jul 29.
7
A Far-Red-Emitting Fluorescence Probe for Sensitive and Selective Detection of Peroxynitrite in Live Cells and Tissues.
Anal Chem. 2017 Oct 17;89(20):10924-10931. doi: 10.1021/acs.analchem.7b02707. Epub 2017 Sep 26.
8
Activatable red emitting fluorescent probe for rapid and sensitive detection of intracellular peroxynitrite.
Talanta. 2020 Sep 1;217:121053. doi: 10.1016/j.talanta.2020.121053. Epub 2020 Apr 19.
9
10
A fluorescent carbon-dots-based mitochondria-targetable nanoprobe for peroxynitrite sensing in living cells.
Biosens Bioelectron. 2017 Apr 15;90:501-507. doi: 10.1016/j.bios.2016.10.060. Epub 2016 Oct 24.

引用本文的文献

1
An isophorone-derived AIE-active probe for peroxynitrite detection and bioimaging applications.
RSC Adv. 2025 Jul 11;15(30):24381-24392. doi: 10.1039/d5ra02185e. eCollection 2025 Jul 10.
2
Small molecule probes for peroxynitrite detection.
Redox Biochem Chem. 2024 Dec;10. doi: 10.1016/j.rbc.2024.100034. Epub 2024 Jul 26.
3
Genetic Code Expansion: Recent Developments and Emerging Applications.
Chem Rev. 2025 Jan 22;125(2):523-598. doi: 10.1021/acs.chemrev.4c00216. Epub 2024 Dec 31.
4
Reaching New Heights in Genetic Code Manipulation with High Throughput Screening.
Chem Rev. 2024 Nov 13;124(21):12145-12175. doi: 10.1021/acs.chemrev.4c00329. Epub 2024 Oct 17.
5
Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids.
Chem Rev. 2024 Sep 25;124(18):10281-10362. doi: 10.1021/acs.chemrev.3c00878. Epub 2024 Aug 9.
6
Non-invasive single cell aptasensing in live cells and animals.
Chem Sci. 2024 Feb 19;15(13):4770-4778. doi: 10.1039/d3sc05735f. eCollection 2024 Mar 27.
8
Site-specific protein conjugates incorporating Para-Azido-L-Phenylalanine for cellular and in vivo imaging.
Methods. 2023 Nov;219:95-101. doi: 10.1016/j.ymeth.2023.10.001. Epub 2023 Oct 5.
9
Genetically Encoded Boronolectin as a Specific Red Fluorescent UDP-GlcNAc Biosensor.
ACS Sens. 2023 Aug 25;8(8):2996-3003. doi: 10.1021/acssensors.3c00409. Epub 2023 Jul 22.
10
Detection of Low Molecular Weight Platform Chemicals and Environmental Contaminants by Genetically Encoded Biosensors.
ACS Omega. 2023 Jun 23;8(26):23227-23239. doi: 10.1021/acsomega.3c01741. eCollection 2023 Jul 4.

本文引用的文献

1
Boronate-Based Probes for Biological Oxidants: A Novel Class of Molecular Tools for Redox Biology.
Front Chem. 2020 Sep 25;8:580899. doi: 10.3389/fchem.2020.580899. eCollection 2020.
2
Genetically encoding thyronine for fluorescent detection of peroxynitrite.
Bioorg Med Chem. 2020 Sep 15;28(18):115665. doi: 10.1016/j.bmc.2020.115665. Epub 2020 Jul 29.
3
Sensing Peroxynitrite in Different Organelles of Murine RAW264.7 Macrophages With Coumarin-Based Fluorescent Probes.
Front Chem. 2020 Feb 20;8:39. doi: 10.3389/fchem.2020.00039. eCollection 2020.
4
A Genetically Encoded, Ratiometric Fluorescent Biosensor for Hydrogen Sulfide.
ACS Sens. 2019 Jun 28;4(6):1626-1632. doi: 10.1021/acssensors.9b00400. Epub 2019 May 23.
5
Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine.
Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):5839-5848. doi: 10.1073/pnas.1804932115. Epub 2018 May 25.
6
Involvement of Astrocytes in Alzheimer's Disease from a Neuroinflammatory and Oxidative Stress Perspective.
Front Mol Neurosci. 2017 Dec 19;10:427. doi: 10.3389/fnmol.2017.00427. eCollection 2017.
7
Illuminating Brain Activities with Fluorescent Protein-Based Biosensors.
Chemosensors (Basel). 2017;5(4). doi: 10.3390/chemosensors5040032. Epub 2017 Nov 28.
8
Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products.
Antioxid Redox Signal. 2018 May 20;28(15):1416-1432. doi: 10.1089/ars.2017.7398. Epub 2017 Nov 17.
9
Expanding and reprogramming the genetic code.
Nature. 2017 Oct 4;550(7674):53-60. doi: 10.1038/nature24031.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验