Radiology, University of Calgary, Alberta, T2N 4N1, Canada; Department of Clinical Neurosciences, University of Calgary, Alberta, T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada.
Departments of Schulich School of Engineering, University of Calgary, Alberta, T2N 4N1, Canada.
J Neurosci Methods. 2021 Apr 1;353:109098. doi: 10.1016/j.jneumeth.2021.109098. Epub 2021 Feb 11.
Deep learning using convolutional neural networks (CNNs) has shown great promise in advancing neuroscience research. However, the ability to interpret the CNNs lags far behind, confounding their clinical translation.
We interrogated 3 heatmap-generating techniques that have increasing generalizability for CNN interpretation: class activation mapping (CAM), gradient (Grad)-CAM, and Grad-CAM++. To investigate the impact of CNNs on heatmap generation, we also examined 6 different models trained to classify brain magnetic resonance imaging into 3 types: relapsing-remitting multiple sclerosis (RRMS), secondary progressive MS (SPMS), and control. Further, we designed novel methods to visualize and quantify the heatmaps to improve interpretability.
Grad-CAM showed the best heatmap localizing ability, and CNNs with a global average pooling layer and pretrained weights had the best classification performance. Based on the best-performing CNN model, called VGG19, the 95th percentile values of Grad-CAM in SPMS were significantly higher than RRMS, indicating greater heterogeneity. Further, voxel-wise analysis of the thresholded Grad-CAM confirmed the difference identified visually between RRMS and SPMS in discriminative brain regions: occipital versus frontal and occipital, or temporal/parietal.
No study has examined the CAM methods together using clinical images. There is also lack of study on the impact of CNN architecture on heatmap outcomes, and of technologies to quantify heatmap patterns in clinical settings.
Grad-CAM outperforms CAM and Grad-CAM++. Integrating Grad-CAM, novel heatmap quantification approaches, and robust CNN models may be an effective strategy in identifying the most crucial brain areas underlying disease development in MS.
使用卷积神经网络 (CNN) 的深度学习在推进神经科学研究方面显示出巨大的潜力。然而,解释 CNN 的能力远远落后,这使其难以在临床上得到转化。
我们研究了 3 种生成热图的技术,这些技术对于 CNN 解释的通用性越来越强:类激活映射 (CAM)、梯度 (Grad)-CAM 和 Grad-CAM++。为了研究 CNN 对热图生成的影响,我们还检查了 6 种不同的模型,这些模型被训练为将脑磁共振成像分为 3 种类型:复发缓解型多发性硬化症 (RRMS)、继发进展型多发性硬化症 (SPMS) 和对照。此外,我们设计了新的方法来可视化和量化热图,以提高可解释性。
Grad-CAM 显示出最好的热图定位能力,具有全局平均池化层和预训练权重的 CNN 具有最好的分类性能。基于表现最好的 CNN 模型,称为 VGG19,SPMS 中的 Grad-CAM 第 95 百分位值明显高于 RRMS,表明异质性更大。此外,对阈值化 Grad-CAM 的体素分析证实了在区分性脑区中 RRMS 和 SPMS 之间视觉上识别出的差异:枕叶与额叶和枕叶,或颞叶/顶叶。
没有研究使用临床图像一起检查 CAM 方法。也缺乏关于 CNN 架构对热图结果的影响以及在临床环境中量化热图模式的技术的研究。
Grad-CAM 优于 CAM 和 Grad-CAM++。整合 Grad-CAM、新的热图量化方法和稳健的 CNN 模型可能是识别 MS 疾病发展背后最关键脑区的有效策略。