Suppr超能文献

具有二进制模式切换和周期调度协议下分布式泄漏延迟的BAM神经网络的H状态估计

H State Estimation for BAM Neural Networks With Binary Mode Switching and Distributed Leakage Delays Under Periodic Scheduling Protocol.

作者信息

Alsaadi Fuad E, Wang Zidong, Luo Yuqiang, Alharbi Njud S, Alsaade Fawaz W

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):4160-4172. doi: 10.1109/TNNLS.2021.3055942. Epub 2022 Aug 31.

Abstract

This article is concerned with the H state estimation problem for a class of bidirectional associative memory (BAM) neural networks with binary mode switching, where the distributed delays are included in the leakage terms. A couple of stochastic variables taking values of 1 or 0 are introduced to characterize the switching behavior between the redundant models of the BAM neural network, and a general type of neuron activation function (i.e., the sector-bounded nonlinearity) is considered. In order to prevent the data transmissions from collisions, a periodic scheduling protocol (i.e., round-robin protocol) is adopted to orchestrate the transmission order of sensors. The purpose of this work is to develop a full-order estimator such that the error dynamics of the state estimation is exponentially mean-square stable and the H performance requirement of the output estimation error is also achieved. Sufficient conditions are established to ensure the existence of the required estimator by constructing a mode-dependent Lyapunov-Krasovskii functional. Then, the desired estimator parameters are obtained by solving a set of matrix inequalities. Finally, a numerical example is provided to show the effectiveness of the proposed estimator design method.

摘要

本文关注一类具有二元模式切换的双向联想记忆(BAM)神经网络的H状态估计问题,其中分布式延迟包含在泄漏项中。引入了几个取值为1或0的随机变量来表征BAM神经网络冗余模型之间的切换行为,并考虑了一般类型的神经元激活函数(即扇形有界非线性)。为了防止数据传输冲突,采用周期性调度协议(即循环协议)来编排传感器的传输顺序。这项工作的目的是开发一种全阶估计器,使得状态估计的误差动态是指数均方稳定的,并且输出估计误差的H性能要求也能得到满足。通过构造一个依赖模式的Lyapunov-Krasovskii泛函,建立了确保所需估计器存在的充分条件。然后,通过求解一组矩阵不等式获得所需的估计器参数。最后,给出一个数值例子来说明所提出的估计器设计方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验