Alsaadi Fuad E, Wang Zidong, Luo Yuqiang, Alharbi Njud S, Alsaade Fawaz W
IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):4160-4172. doi: 10.1109/TNNLS.2021.3055942. Epub 2022 Aug 31.
This article is concerned with the H state estimation problem for a class of bidirectional associative memory (BAM) neural networks with binary mode switching, where the distributed delays are included in the leakage terms. A couple of stochastic variables taking values of 1 or 0 are introduced to characterize the switching behavior between the redundant models of the BAM neural network, and a general type of neuron activation function (i.e., the sector-bounded nonlinearity) is considered. In order to prevent the data transmissions from collisions, a periodic scheduling protocol (i.e., round-robin protocol) is adopted to orchestrate the transmission order of sensors. The purpose of this work is to develop a full-order estimator such that the error dynamics of the state estimation is exponentially mean-square stable and the H performance requirement of the output estimation error is also achieved. Sufficient conditions are established to ensure the existence of the required estimator by constructing a mode-dependent Lyapunov-Krasovskii functional. Then, the desired estimator parameters are obtained by solving a set of matrix inequalities. Finally, a numerical example is provided to show the effectiveness of the proposed estimator design method.
本文关注一类具有二元模式切换的双向联想记忆(BAM)神经网络的H状态估计问题,其中分布式延迟包含在泄漏项中。引入了几个取值为1或0的随机变量来表征BAM神经网络冗余模型之间的切换行为,并考虑了一般类型的神经元激活函数(即扇形有界非线性)。为了防止数据传输冲突,采用周期性调度协议(即循环协议)来编排传感器的传输顺序。这项工作的目的是开发一种全阶估计器,使得状态估计的误差动态是指数均方稳定的,并且输出估计误差的H性能要求也能得到满足。通过构造一个依赖模式的Lyapunov-Krasovskii泛函,建立了确保所需估计器存在的充分条件。然后,通过求解一组矩阵不等式获得所需的估计器参数。最后,给出一个数值例子来说明所提出的估计器设计方法的有效性。