Suppr超能文献

氧化铈纳米颗粒改善脑出血后的白质损伤:少突胶质细胞-星形胶质细胞在髓鞘再形成中的作用。

Ceria nanoparticles ameliorate white matter injury after intracerebral hemorrhage: microglia-astrocyte involvement in remyelination.

机构信息

Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.

Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China.

出版信息

J Neuroinflammation. 2021 Feb 15;18(1):43. doi: 10.1186/s12974-021-02101-6.

Abstract

BACKGROUND

Intracerebral hemorrhage (ICH) can induce excessive accumulation of reactive oxygen species (ROS) that may subsequently cause severe white matter injury. The process of oligodendrocyte progenitor cell (OPC) differentiation is orchestrated by microglia and astrocytes, and ROS also drives the activation of microglia and astrocytes. In light of the potent ROS scavenging capacity of ceria nanoparticles (CeNP), we aimed to investigate whether treatment with CeNP ameliorates white matter injury by modulating ROS-induced microglial polarization and astrocyte alteration.

METHODS

ICH was induced in vivo by collagenase VII injection. Mice were administered with PLX3397 for depleting microglia. Primary microglia and astrocytes were used for in vitro experiments. Transmission electron microscopy analysis and immunostaining were performed to verify the positive effects of CeNP in remyelination and OPC differentiation. Flow cytometry, real-time polymerase chain reaction, immunofluorescence and western blotting were used to detect microglia polarization, astrocyte alteration, and the underlying molecular mechanisms.

RESULTS

CeNP treatment strongly inhibited ROS-induced NF-κB p65 translocation in both microglia and astrocytes, and significantly decreased the expression of M1 microglia and A1 astrocyte. Furthermore, we found that CeNP treatment promoted remyelination and OPC differentiation after ICH, and such effects were alleviated after microglial depletion. Interestingly, we also found that the number of mature oligodendrocytes was moderately increased in ICH + CeNP + PLX3397-treated mice compared to the ICH + vehicle + PLX3397 group. Therefore, astrocytes might participate in the pathophysiological process. The subsequent phagocytosis assay indicated that A1 astrocyte highly expressed C3, which could bind with microglia C3aR and hinder microglial engulfment of myelin debris. This result further replenished the feedback mechanism from astrocytes to microglia.

CONCLUSION

The present study reveals a new mechanism in white matter injury after ICH: ICH induces M1 microglia and A1 astrocyte through ROS-induced NF-κB p65 translocation that hinders OPC maturation. Subsequently, A1 astrocytes inhibit microglial phagocytosis of myelin debris via an astrocytic C3-microglial C3aR axis. Polyethylene glycol-CeNP treatment inhibits this pathological process and ultimately promotes remyelination. Such findings enlighten us that astrocytes and microglia should be regarded as a functional unit in future works.

摘要

背景

脑出血(ICH)可引起活性氧(ROS)的过度积累,进而可能导致严重的白质损伤。少突胶质前体细胞(OPC)分化的过程由小胶质细胞和星形胶质细胞协调,ROS 也驱动小胶质细胞和星形胶质细胞的激活。鉴于氧化铈纳米颗粒(CeNP)具有强大的清除 ROS 的能力,我们旨在研究 CeNP 是否通过调节 ROS 诱导的小胶质细胞极化和星形胶质细胞改变来改善白质损伤。

方法

通过胶原酶 VII 注射在体内诱导 ICH。用 PLX3397 处理小鼠以耗尽小胶质细胞。使用原代小胶质细胞和星形胶质细胞进行体外实验。透射电子显微镜分析和免疫染色用于验证 CeNP 在髓鞘形成和 OPC 分化中的积极作用。流式细胞术、实时聚合酶链反应、免疫荧光和 Western 印迹用于检测小胶质细胞极化、星形胶质细胞改变和潜在的分子机制。

结果

CeNP 处理强烈抑制了 ROS 诱导的小胶质细胞和星形胶质细胞中 NF-κB p65 的易位,并显著降低了 M1 小胶质细胞和 A1 星形胶质细胞的表达。此外,我们发现 CeNP 治疗可促进 ICH 后髓鞘形成和 OPC 分化,而在耗尽小胶质细胞后则减轻了这种作用。有趣的是,我们还发现与 ICH + 载体 + PLX3397 组相比,ICH + CeNP + PLX3397 处理的小鼠中成熟少突胶质细胞的数量适度增加。因此,星形胶质细胞可能参与了病理生理过程。随后的吞噬作用测定表明,A1 星形胶质细胞高表达 C3,可与小胶质细胞 C3aR 结合并阻碍小胶质细胞吞噬髓鞘碎片。这一结果进一步补充了星形胶质细胞向小胶质细胞的反馈机制。

结论

本研究揭示了 ICH 后白质损伤的一个新机制:ICH 通过 ROS 诱导的 NF-κB p65 易位诱导 M1 小胶质细胞和 A1 星形胶质细胞,从而阻碍 OPC 成熟。随后,A1 星形胶质细胞通过星形胶质细胞 C3-小胶质细胞 C3aR 轴抑制小胶质细胞对髓鞘碎片的吞噬作用。聚乙二醇化氧化铈纳米颗粒治疗抑制了这一病理过程,最终促进了髓鞘形成。这些发现提醒我们,在未来的研究中应将星形胶质细胞和小胶质细胞视为一个功能单元。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc22/7883579/f89b9562d085/12974_2021_2101_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验