Rode Richard P, Chung Henry H, Miller Hayley N, Gaborski Thomas R, Moghaddam Saeed
Department of Mechanical Engineering, University of Florida, Gainesville, FL 32611, USA.
Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY 14623, USA.
Adv Mater Interfaces. 2021 Feb 5;8(3). doi: 10.1002/admi.202001985. Epub 2020 Dec 30.
2D nanomaterials have long been considered for development of high permeability membranes. However, current processes have yet to yield a viable membrane for practical use due to the lack of scalability and substantial performance improvements over existing membranes. Herein, an ultrathin graphene oxide (GO) membrane with a permeability of 1562 mL h mmHg m, two orders of magnitude higher than the existing nanofiltration membranes, and a tight molecular weight cut-off is presented. To build such a membrane, a new process involving self-assembly and optimization of GO nanoplatelet physicochemical properties is developed. The process produces a highly organized mosaic of nanoplatelets enabling ultra-high permeability and selectivity. An adjustable molecular interlinker between the layers enables absolute nanometer-scale size cut-offs. These characteristics promise significant improvements to many nanoparticle and biological separation applications. In this work, the performance of the membrane in blood dialysis scenarios is evaluated. Urea and cytochrome-c sieving coefficients of 0.5 and 0.4 are achieved while retaining 99% of albumin. Hemolysis, complement activation, and coagulation studies exhibit a performance on par or superior to the existing dialysis membrane materials.
二维纳米材料长期以来一直被考虑用于开发高渗透性膜。然而,由于缺乏可扩展性以及与现有膜相比性能提升不显著,目前的工艺尚未生产出可实际应用的可行膜。在此,展示了一种超薄氧化石墨烯(GO)膜,其渗透率为1562 mL h mmHg m,比现有的纳滤膜高两个数量级,且具有紧密的分子量截留值。为构建这样的膜,开发了一种涉及氧化石墨烯纳米片物理化学性质自组装和优化的新工艺。该工艺产生了高度有序的纳米片镶嵌结构,实现了超高的渗透率和选择性。层间可调节的分子交联剂实现了绝对的纳米级尺寸截留。这些特性有望显著改进许多纳米颗粒和生物分离应用。在这项工作中,评估了该膜在血液透析场景中的性能。尿素和细胞色素c的筛分系数分别达到0.5和0.4,同时保留了99%的白蛋白。溶血、补体激活和凝血研究表明其性能与现有透析膜材料相当或更优。