Suppr超能文献

在几何阻挫磁体的量子模拟中相对于路径积分蒙特卡罗方法的标度优势。

Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets.

作者信息

King Andrew D, Raymond Jack, Lanting Trevor, Isakov Sergei V, Mohseni Masoud, Poulin-Lamarre Gabriel, Ejtemaee Sara, Bernoudy William, Ozfidan Isil, Smirnov Anatoly Yu, Reis Mauricio, Altomare Fabio, Babcock Michael, Baron Catia, Berkley Andrew J, Boothby Kelly, Bunyk Paul I, Christiani Holly, Enderud Colin, Evert Bram, Harris Richard, Hoskinson Emile, Huang Shuiyuan, Jooya Kais, Khodabandelou Ali, Ladizinsky Nicolas, Li Ryan, Lott P Aaron, MacDonald Allison J R, Marsden Danica, Marsden Gaelen, Medina Teresa, Molavi Reza, Neufeld Richard, Norouzpour Mana, Oh Travis, Pavlov Igor, Perminov Ilya, Prescott Thomas, Rich Chris, Sato Yuki, Sheldan Benjamin, Sterling George, Swenson Loren J, Tsai Nicholas, Volkmann Mark H, Whittaker Jed D, Wilkinson Warren, Yao Jason, Neven Hartmut, Hilton Jeremy P, Ladizinsky Eric, Johnson Mark W, Amin Mohammad H

机构信息

D-Wave Systems, Burnaby, BC, Canada.

Google, Zurich, Switzerland.

出版信息

Nat Commun. 2021 Feb 18;12(1):1113. doi: 10.1038/s41467-021-20901-5.

Abstract

The promise of quantum computing lies in harnessing programmable quantum devices for practical applications such as efficient simulation of quantum materials and condensed matter systems. One important task is the simulation of geometrically frustrated magnets in which topological phenomena can emerge from competition between quantum and thermal fluctuations. Here we report on experimental observations of equilibration in such simulations, measured on up to 1440 qubits with microsecond resolution. By initializing the system in a state with topological obstruction, we observe quantum annealing (QA) equilibration timescales in excess of one microsecond. Measurements indicate a dynamical advantage in the quantum simulation compared with spatially local update dynamics of path-integral Monte Carlo (PIMC). The advantage increases with both system size and inverse temperature, exceeding a million-fold speedup over an efficient CPU implementation. PIMC is a leading classical method for such simulations, and a scaling advantage of this type was recently shown to be impossible in certain restricted settings. This is therefore an important piece of experimental evidence that PIMC does not simulate QA dynamics even for sign-problem-free Hamiltonians, and that near-term quantum devices can be used to accelerate computational tasks of practical relevance.

摘要

量子计算的前景在于利用可编程量子设备实现实际应用,例如对量子材料和凝聚态系统进行高效模拟。一项重要任务是对几何阻挫磁体进行模拟,其中量子涨落和热涨落之间的竞争可能会产生拓扑现象。在此,我们报告了此类模拟中平衡态的实验观测结果,测量分辨率高达微秒级,涉及多达1440个量子比特。通过将系统初始化为具有拓扑阻碍的状态,我们观测到量子退火(QA)平衡时间尺度超过一微秒。测量结果表明,与路径积分蒙特卡罗(PIMC)的空间局部更新动力学相比,量子模拟具有动力学优势。这种优势随着系统规模和逆温度的增加而增大,与高效的中央处理器实现相比,加速倍数超过百万倍。PIMC是此类模拟的一种领先经典方法,最近研究表明,在某些受限情况下不可能存在这种缩放优势。因此,这是一项重要的实验证据,表明即使对于无符号问题的哈密顿量,PIMC也无法模拟QA动力学,并且近期量子设备可用于加速具有实际意义的计算任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a88a/7892843/4747fc4b4e76/41467_2021_20901_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验