Han Xue, Lu Wanpeng, Chen Yinlin, da Silva Ivan, Li Jiangnan, Lin Longfei, Li Weiyao, Sheveleva Alena M, Godfrey Harry G W, Lu Zhenzhong, Tuna Floriana, McInnes Eric J L, Cheng Yongqiang, Daemen Luke L, McPherson Laura J McCormick, Teat Simon J, Frogley Mark D, Rudić Svemir, Manuel Pascal, Ramirez-Cuesta Anibal J, Yang Sihai, Schröder Martin
Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
ISIS Facility, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K.
J Am Chem Soc. 2021 Mar 3;143(8):3153-3161. doi: 10.1021/jacs.0c11930. Epub 2021 Feb 19.
Ammonia (NH) is a promising energy resource owing to its high hydrogen density. However, its widespread application is restricted by the lack of efficient and corrosion-resistant storage materials. Here, we report high NH adsorption in a series of robust metal-organic framework (MOF) materials, MFM-300(M) (M = Fe, V, Cr, In). MFM-300(M) (M = Fe, V, Cr) show fully reversible capacity for >20 cycles, reaching capacities of 16.1, 15.6, and 14.0 mmol g, respectively, at 273 K and 1 bar. Under the same conditions, MFM-300(V) exhibits the highest uptake among this series of MOFs of 17.3 mmol g. neutron powder diffraction, single-crystal X-ray diffraction, and electron paramagnetic resonance spectroscopy confirm that the redox-active V center enables host-guest charge transfer, with V being reduced to V and NH being oxidized to hydrazine (NH). A combination of inelastic neutron scattering and DFT modeling has revealed the binding dynamics of adsorbed NH within these MOFs to afford a comprehensive insight into the application of MOF materials to the adsorption and conversion of NH.
氨(NH₃)因其高氢密度而成为一种很有前景的能源。然而,其广泛应用受到缺乏高效且耐腐蚀存储材料的限制。在此,我们报道了一系列坚固的金属有机框架(MOF)材料MFM - 300(M)(M = Fe、V、Cr、In)对氨具有高吸附性能。MFM - 300(M)(M = Fe、V、Cr)在超过20次循环中表现出完全可逆的容量,在273 K和1巴下分别达到16.1、15.6和14.0 mmol g⁻¹的容量。在相同条件下,MFM - 300(V)在这一系列MOF中表现出最高的吸附量,为17.3 mmol g⁻¹。中子粉末衍射、单晶X射线衍射和电子顺磁共振光谱证实,具有氧化还原活性的V中心实现了主客体电荷转移,V被还原为V³⁺,NH₃被氧化为肼(N₂H₄)。非弹性中子散射和密度泛函理论(DFT)建模相结合揭示了这些MOF中吸附的NH₃的结合动力学,从而全面深入了解MOF材料在NH₃吸附和转化方面的应用。