Navakoteswara Rao Vempuluru, Ravi Parnapalle, Sathish Marappan, Lakshmana Reddy Nagappagari, Lee Kiyoung, Sakar Mohan, Prathap Pathi, Mamatha Kumari Murikinati, Raghava Reddy Kakarla, Nadagouda Mallikarjuna N, Aminabhavi Tejraj M, Shankar Muthukonda Venkatakrishnan
Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India.
Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
J Hazard Mater. 2021 Jul 5;413:125359. doi: 10.1016/j.jhazmat.2021.125359. Epub 2021 Feb 9.
This investigation is first to elucidate the synthesis of mono-dispersed ZnS/NiO-core/shell nanostructures with a uniform thin layer of NiO-shell on the ZnS-nanospheres as a core under controlled thermal treatments. NiO-shell thickness varied to 8.2, 12.4, 18.2, and 24.2 nm, while the ZnS-core diameter remained stable about 96 ± 6 nm. The crystalline phase and core/shell structure of the materials were confirmed using XRD and HRTEM techniques, respectively. Optical properties through UV-vis spectroscopy analysis revealed the manifestation of red-shift in the absorption spectrum of core/shell materials, while the XPS analysis of elements elucidated their stable oxidation states in ZnS/NiO core/shell structure. The optimized ZnS/NiO-core/shell showed 1.42 times higher H generation (162.1 mmol h g) than the pristine ZnS-core (113.2 mmol h g), and 64.5 times higher than the pristine NiO-shell (2.5 mmol h g). The quantum efficiency at wavelengths of 420, 365 nm, and 1.5 G air mass filters was found to be 13.5%, 25.0%, and 45.3%, respectively. Water splitting experiments was also performed without addition of any additives, which showed enhanced H gas evolution of 1.6 mmol h g under the sunlight illumination. Photoelectrochemical measurements revealed the stable photocurrent density and minimized charge recombination in the system. The performed recyclability and reusability tests for five recycles demonstrated the excellent stability of the developed photocatalysts.
本研究首次阐明了在可控热处理条件下,以硫化锌纳米球为核,合成具有均匀氧化镍薄壳层的单分散硫化锌/氧化镍核壳纳米结构。氧化镍壳层厚度分别为8.2、12.4、18.2和24.2纳米,而硫化锌核直径稳定在96±6纳米左右。分别使用XRD和HRTEM技术确认了材料的晶相和核壳结构。通过紫外可见光谱分析的光学性质显示,核壳材料的吸收光谱出现红移,而元素的XPS分析阐明了它们在硫化锌/氧化镍核壳结构中的稳定氧化态。优化后的硫化锌/氧化镍核壳结构产生氢气的速率(162.1 mmol h g)比原始硫化锌核(113.2 mmol h g)高1.42倍,比原始氧化镍壳(2.5 mmol h g)高64.5倍。在波长420、365纳米和1.5 G空气质量滤光片条件下的量子效率分别为13.5%、25.0%和45.3%。还进行了不添加任何添加剂的水分解实验,结果表明在阳光照射下,氢气析出量提高到1.6 mmol h g。光电化学测量显示系统中光电流密度稳定,电荷复合最小化。对开发的光催化剂进行了五次循环的回收利用测试,结果表明其具有出色稳定性。