Suppr超能文献

使用KNIME分析平台对COVID-19胸部X光图像数据集进行无代码深度学习

Codeless Deep Learning of COVID-19 Chest X-Ray Image Dataset with KNIME Analytics Platform.

作者信息

An Jun Young, Seo Hoseok, Kim Young-Gon, Lee Kyu Eun, Kim Sungwan, Kong Hyoun-Joong

机构信息

Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.

Department of Biomedical Engineering, Chungnam National University College of Medicine, Daejeon, Korea.

出版信息

Healthc Inform Res. 2021 Jan;27(1):82-91. doi: 10.4258/hir.2021.27.1.82. Epub 2021 Jan 31.

Abstract

OBJECTIVES

This paper proposes a method for computer-assisted diagnosis of coronavirus disease 2019 (COVID-19) through chest X-ray imaging using a deep learning model without writing a single line of code using the Konstanz Information Miner (KNIME) analytics platform.

METHODS

We obtained 155 samples of posteroanterior chest X-ray images from COVID-19 open dataset repositories to develop a classification model using a simple convolutional neural network (CNN). All of the images contained diagnostic information for COVID-19 and other diseases. The model would classify whether a patient was infected with COVID-19 or not. Eighty percent of the images were used for model training, and the rest were used for testing. The graphic user interface-based programming in the KNIME enabled class label annotation, data preprocessing, CNN model training and testing, performance evaluation, and so on.

RESULTS

1,000 epochs training were performed to test the simple CNN model. The lower and upper bounds of positive predictive value (precision), sensitivity (recall), specificity, and f-measure are 92.3% and 94.4%. Both bounds of the model's accuracies were equal to 93.5% and 96.6% of the area under the receiver operating characteristic curve for the test set.

CONCLUSIONS

In this study, a researcher who does not have basic knowledge of python programming successfully performed deep learning analysis of chest x-ray image dataset using the KNIME independently. The KNIME will reduce the time spent and lower the threshold for deep learning research applied to healthcare.

摘要

目的

本文提出一种利用深度学习模型,通过胸部X光成像对2019冠状病毒病(COVID-19)进行计算机辅助诊断的方法,该方法无需编写一行代码,而是使用康斯坦茨信息挖掘器(KNIME)分析平台。

方法

我们从COVID-19开放数据集存储库中获取了155份后前位胸部X光图像样本,以使用简单卷积神经网络(CNN)开发分类模型。所有图像都包含COVID-19和其他疾病的诊断信息。该模型将对患者是否感染COVID-19进行分类。80%的图像用于模型训练,其余用于测试。KNIME中基于图形用户界面的编程实现了类别标签注释、数据预处理、CNN模型训练与测试、性能评估等。

结果

对简单CNN模型进行了1000个轮次的训练测试。阳性预测值(精确率)、灵敏度(召回率)、特异度和F值的下限和上限分别为92.3%和94.4%。模型准确率的两个边界分别等于测试集接收者操作特征曲线下面积的93.5%和96.6%。

结论

在本研究中,一位没有Python编程基础知识的研究人员成功地使用KNIME独立对胸部X光图像数据集进行了深度学习分析。KNIME将减少所花费的时间,并降低应用于医疗保健领域的深度学习研究的门槛。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcfa/7921566/63673ddba3ae/hir-27-1-82f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验